Operating Manual

CB / CB-UL (E7)

CO₂ Incubators

CO₂ Incubators with O₂ Control

CO₂ Incubators with Active Humidification

with sterilizable NDIR sensor system for CO₂ and microprocessor program controller MB2

<table>
<thead>
<tr>
<th>Model</th>
<th>Model version</th>
<th>Voltage</th>
<th>Equipment</th>
<th>Art. no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CB 170</td>
<td>CB170-230V</td>
<td>200-230 V</td>
<td>O₂ control 0-20 vol.-%</td>
<td>9040-0131, 9140-0131</td>
</tr>
<tr>
<td>CB 170</td>
<td>CB170-230V-O</td>
<td>200-230 V</td>
<td>Active humidification</td>
<td>9040-0132, 9140-0132</td>
</tr>
<tr>
<td>CB 170</td>
<td>CB170-230V-F</td>
<td>200-230 V</td>
<td>Active humidification</td>
<td>9040-0133, 9140-0133</td>
</tr>
<tr>
<td>CB 170-UL</td>
<td>CB170-230V-OF</td>
<td>200-230 V</td>
<td>Active humidification O₂ control 0-20 vol.-%</td>
<td>9040-0134, 9140-0134</td>
</tr>
<tr>
<td>CB 170-UL</td>
<td>CB170-120V</td>
<td>100-120 V</td>
<td>O₂ control 0-20 vol.-%</td>
<td>9040-0139, 9140-0139</td>
</tr>
<tr>
<td>CB 170-UL</td>
<td>CB170-120V-O</td>
<td>100-120 V</td>
<td>Active humidification</td>
<td>9040-0140, 9140-0140</td>
</tr>
<tr>
<td>CB 170-UL</td>
<td>CB170-120V-F</td>
<td>100-120 V</td>
<td>Active humidification</td>
<td>9040-0141, 9140-0141</td>
</tr>
<tr>
<td>CB 170-UL</td>
<td>CB170-120V-OF</td>
<td>100-120 V</td>
<td>Active humidification O₂ control 0-20 vol.-%</td>
<td>9040-0142, 9140-0142</td>
</tr>
<tr>
<td>CB 260</td>
<td>CB260-230V</td>
<td>200-230 V</td>
<td>O₂ control 0-20 vol.-%</td>
<td>9040-0147, 9140-0147</td>
</tr>
<tr>
<td>CB 260</td>
<td>CB260-230V-O</td>
<td>200-230 V</td>
<td>Active humidification</td>
<td>9040-0148, 9140-0148</td>
</tr>
<tr>
<td>CB 260</td>
<td>CB260-230V-F</td>
<td>200-230 V</td>
<td>Active humidification</td>
<td>9040-0149, 9140-0149</td>
</tr>
<tr>
<td>CB 260-UL</td>
<td>CB260-230V-OF</td>
<td>200-230 V</td>
<td>Active humidification O₂ control 0-20 vol.-%</td>
<td>9040-0150, 9140-0150</td>
</tr>
<tr>
<td>CB 260-UL</td>
<td>CB260-120V</td>
<td>100-120 V</td>
<td>O₂ control 0-20 vol.-%</td>
<td>9040-0152, 9140-0152</td>
</tr>
<tr>
<td>CB 260-UL</td>
<td>CB260-120V-O</td>
<td>100-120 V</td>
<td>Active humidification</td>
<td>9040-0153, 9140-0153</td>
</tr>
<tr>
<td>CB 260-UL</td>
<td>CB260-120V-F</td>
<td>100-120 V</td>
<td>Active humidification</td>
<td>9040-0154, 9140-0154</td>
</tr>
<tr>
<td>CB 260-UL</td>
<td>CB260-120V-OF</td>
<td>100-120 V</td>
<td>Active humidification O₂ control 0-20 vol.-%</td>
<td>9040-0155, 9140-0155</td>
</tr>
</tbody>
</table>

BINDER GmbH

Address: Post office box 102, 78502 Tuttlingen, Germany
Phone: +49 7462 2005 0
Fax: +49 7462 2005 100
Internet: http://www.binder-world.com
E-mail: info@binder-world.com
Service Hotline: +49 7462 2005 555
Service Fax: +49 7462 2005 93 555
Service E-Mail: service@binder-world.com
Service Hotline USA: +1 866 885 9794 or +1 631 224 4340 x3
Service Hotline Asia Pacific: +852 390 705 04 or +852 390 705 03
Service Hotline Russia and CIS: +7 495 988 15 16
Contents

1. **SAFETY** ... 8

1.1 Personnel Qualification ... 8
1.2 Operating manual ... 8
1.3 Legal considerations .. 8
1.4 Structure of the safety instructions .. 9
 1.4.1 Signal word panel .. 9
 1.4.2 Safety alert symbol ... 9
 1.4.3 Pictograms ... 10
 1.4.4 Word message panel structure ... 11
1.5 Localization / position of safety labels on the chamber .. 11
1.6 Type plate .. 12
1.7 General safety instructions on installing and operating the CO₂ incubator 13
1.8 Precautions when working with gases .. 15
1.9 Precautions when handling gas cylinders ... 17
1.10 Intended use ... 18
1.11 Foreseeable Misuse .. 19
1.12 Residual Risks .. 20
1.13 Operating instructions ... 21
1.14 Measures to prevent accidents ... 22
1.15 Resistance of the humidity sensor against harmful substances 23

2. **CHAMBER DESCRIPTION** .. 24

2.1 Chamber overview .. 25
2.2 Inner chamber ... 26
2.3 Control panel on the rear of the chamber ... 27
2.4 Instrument panel ... 28

3. **COMPLETENESS OF DELIVERY, TRANSPORTATION, STORAGE, AND INSTALLATION** ... 28

3.1 Unpacking, and checking equipment and completeness of delivery 28
3.2 Guidelines for safe lifting and transportation .. 29
3.3 Storage ... 29
3.4 Location of installation and ambient conditions .. 30

4. **INSTALLATION AND CONNECTIONS** .. 33

4.1 Shelves .. 33
4.2 Permadry™ water pan ... 34
4.3 Connecting the O₂ sensor (chamber with O₂ control) ... 35
4.4 Gas connections ... 35
 4.4.1 Connection of the CO₂ gas cylinder ... 36
 4.4.2 Connection of the O₂ gas cylinder (chamber with O₂ control with optional alternative control range 10 up to 95 vol-% O₂) .. 37
 4.4.3 Connection of the N₂ gas cylinder (chamber with O₂ control) 38
 4.4.4 Connecting the gas hose to the chamber rear (for CO₂, O₂, N₂) 39
 4.4.5 Gas cylinder connection kits (option) ... 41
4.5 Water supply and dehumidification for the chamber with active humidification 42
 4.5.1 General remarks on water supply ... 42
 4.5.1.1 Water supply ... 42
 4.5.1.2 Dehumidification ... 42
 4.5.1.3 Types of suitable water quality ... 42
 4.5.1.4 BINDER Pure Aqua Service (option) ... 43
 4.5.2 Water supply via freshwater bag (standard) ... 43
 4.5.2.1 Scope of delivery ... 43
 4.5.2.2 Installation and connection of the freshwater bag 44
5. FUNCTIONAL OVERVIEW OF THE MB2 CHAMBER CONTROLLER

5.1 Operating functions in normal display ... 56
5.2 Display views: Normal display, program display, chart-recorder display 57
5.3 Controller icons overview ... 58
5.4 Operating modes .. 60
5.5 Controller menu structure ... 61
 5.5.1 Main menu ... 62
 5.5.2 “Settings” submenu .. 63
 5.5.3 “Service” submenu ... 63
5.6 Principle of controller entries .. 64
5.7 Performance during and after power failures ... 64
5.8 Performance when opening the door .. 65

6. START UP ... 65
 6.1 Turning on the chamber ... 65
 6.2 Controller settings upon start up ... 66
 6.3 Factory settings .. 67
 6.4 Equilibration time .. 67
 6.5 Operating the DuoDoor™ door lock ..------------ 68
 6.6 Required gas supply for the chamber with O2 control ... 68
 6.6.1 Hypoxic control range 0.2 vol.-% up to 20 vol.- % O2 (regular) 68
 6.6.2 Alternative control range 10 vol.-% up to 95 vol.-% (option) 68
 6.6.3 Operation without O2 control .. 69
 6.7 Activating / deactivating CO2, O2 and humidity control 69
 6.8 Humidity control of the Permadry™ system ... 70

7. SET-POINT ENTRY IN “FIXED VALUE” OPERATING MODE 71
 7.1 Set-point entry through the “Setpoints” menu .. 72
 7.2 Direct setpoint entry via Normal display ... 73
 7.3 Special controller functions via operation lines ... 74
 7.4 Safety instructions for setting high gas concentrations .. 75

8. TIMER PROGRAM: STOPWATCH FUNCTION ... 76
 8.1 Starting a timer program ... 76
 8.1.1 Performance during program delay time ... 76
 8.2 Stopping a running timer program ... 77
 8.2.1 Pausing a running timer program .. 77
 8.2.2 Cancelling a running timer program ... 77
 8.3 Performance after the end of the program .. 77

9. TIME PROGRAMS .. 78
 9.1 Starting an existing time program ... 78
 9.1.1 Performance during program delay time ... 78
 9.2 Stopping a running time program ... 79
 9.2.1 Pausing a running time program ... 79
 9.2.2 Cancelling a running time program ... 79
 9.3 Performance after the end of the program ... 79
9.4 Creating a new time program ... 85
9.5 Program editor: program management .. 86
9.5.1 Deleting a time program ... 87
9.6 Section editor: section management .. 88
9.6.1 Add a new program section .. 89
9.6.2 Copy and insert or replace a program section 90
9.6.3 Deleting a program section ... 91
9.7 Value entry for a program section ... 92
9.7.1 Section duration .. 93
9.7.2 Set-point ramp and set-point step .. 94
9.7.3 Special controller functions via operation lines 95
9.7.4 Setpoint entry .. 96
9.7.5 Tolerance range ... 97
9.7.6 Repeating one or several sections within a time program 98
9.7.7 Saving the time program .. 99

10. WEEK PROGRAMS ... 100
10.1 Starting an existing week program .. 101
10.2 Cancelling a running week program .. 102
10.3 Creating a new week program .. 103
10.4 Program editor: program management .. 104
10.4.1 Deleting a week program ... 105
10.5 Section editor: section management ... 106
10.5.1 Add a new program section .. 107
10.5.2 Copy and insert or replace a program section 108
10.5.3 Deleting a program section .. 109
10.6 Value entry for a program section .. 110
10.6.1 Set-point ramp and set-point step modes 111
10.6.2 Weekday ... 112
10.6.3 Start time ... 113
10.6.4 Setpoint entry .. 114
10.6.5 Special controller functions via operation lines 115

11. NOTIFICATION AND ALARM FUNCTIONS 116
11.1 Notification and alarm messages overview 117
11.1.1 Notifications ... 118
11.1.2 Alarm messages ... 119
11.2 State of alarm .. 120
11.3 Resetting an alarm, list of active alarms .. 121
11.4 Activating / deactivating the audible alarm (alarm buzzer) 122
11.5 Tolerance range settings and alarm delay times 123
11.6 Zero-voltage relay alarm output ... 124

12. TEMPERATURE SAFETY DEVICES ... 125
12.1 Over temperature protective device (class 1) 126
12.2 Overtemperature safety controller class 3.1 127
12.2.1 Safety controller modes ... 128
12.2.2 Setting the safety controller ... 129
12.2.3 Message and measures in the state of alarm 130
12.2.4 Function check ... 131

13. USER MANAGEMENT ... 132
13.1 Authorization levels and password protection 133
13.2 Log in .. 134
13.3 Log out .. 135
13.4 User change .. 136
13.5 Password assignment and password change 137
13.5.1 Password change ... 138
13.5.2 Deleting the password for an individual authorization level .. 118
13.5.3 New password assignment for “service” or “admin” authorization level when the password function was deactivated ... 119
13.6 Activation code .. 120

14. GENERAL CONTROLLER SETTNGS ... 121

14.1 Selecting the controller’s menu language .. 121
14.2 Setting date and time .. 121
14.3 Selecting the temperature unit .. 123
14.4 Display configuration .. 123
 14.4.1 Adapting the display parameters ... 123
 14.4.2 Touchscreen calibration ... 124
14.5 Network and communication ... 125
 14.5.1 Serial RS485 interface (available via BINDER INDIVIDUAL Customized Solutions) 125
 14.5.2 Ethernet .. 126
 14.5.2.1 Configuration .. 126
 14.5.2.2 Display of MAC address ... 127
 14.5.3 Web server .. 127
 14.5.4 E-Mail .. 128
14.6 USB menu: Data transfer via USB interface ... 129

15. GENERAL INFORMATION ... 130

15.1 Service contact page .. 130
15.2 Current operating parameters .. 130
15.3 Event list ... 131
15.4 Technical chamber information .. 131

16. CHART RECORDER DISPLAY .. 132

16.1 Views ... 132
 16.1.1 Show and hide legend ... 132
 16.1.2 Switch between legend pages .. 132
 16.1.3 Show and hide specific indications .. 133
 16.1.4 History display .. 133
16.2 Setting the parameters .. 136

17. HUMIDIFICATION SYSTEM (CHAMBER WITH ACTIVE HUMIDIFICATION) 137

17.1 Function of the humidifying system .. 137
17.2 Function of the dehumidifying system .. 138

18. OPTIONS ... 138

18.1 APT-COM™ 4 Multi Management Software (option) .. 138
18.2 Silicone access ports 30 mm / 1.18 in, closable from both sides with silicon plugs (option) 138
18.3 Quick sample access (option) .. 139
18.4 Interior socket 230V (option, available via BINDER INDIVIDUAL Customized Solutions) 140
18.5 Analog outputs for temperature and CO₂ (option) ... 141
18.6 Data Logger kits (option) ... 142
18.7 Access port for extra-low voltage (option) .. 142
18.8 BINDER Gas Supply Service – External bottle changer for CO₂, N₂ or O₂ (option) 143
18.9 Stands ... 144
 18.9.1 Stacking stand (option) ... 144
 18.9.2 Base on castors (option) ... 144
18.10 Water supply sets (optional for chambers with active humidification) 144
 18.10.1 Tubular bag set (option) .. 144
 18.10.2 Humidification water set (option) .. 144
 18.10.3 Water container set (option) .. 144

19. REFERENCE MEASUREMENTS ... 145

19.1 CO₂ reference measuring .. 145
 19.1.1 Measuring CO₂ concentration indirectly via the pH of the cell medium 145
20. AVOIDING MICROBIAL CONTAMINATION ... 147
20.1 Cells and media ... 147
20.2 Laboratory conditions / equipment around the incubator .. 147
20.3 Working and behavior in the lab .. 147
20.4 Chamber design and equipment of the CO₂ incubator ... 148
20.5 Handling the CO₂ incubator ... 149

21. CLEANING, DECONTAMINATION / DISINFECTION, AND STERILIZATION .. 150
21.1 Cleaning ... 150
21.2 Decontamination / chemical disinfection of the chamber ... 152
21.2.1 Disinfection of the CO₂ sensor ... 153
21.2.2 Disinfection of components of the fresh water supply system (chamber with active
humidification) ... 153
21.3 Hot-air sterilization at 180 °C / 356 °F .. 154
21.3.1 Overview .. 154
21.3.2 Preparation for a hot-air sterilization ... 155
21.3.3 Starting the sterilization cycle and running the hot-air sterilization 155
21.3.4 Prematurely terminating the sterilization cycle
21.3.4.1 Prematurely terminating the sterilization cycle after less than 4 hours: Ineffective
sterilization .. 157
21.3.4.2 Prematurely terminating the sterilization cycle after more than 4 hours, i.e., during the
cooling-down phase: successful sterilization .. 158
21.3.5 Completing the entire sterilization cycle ... 159

22. MAINTENANCE AND SERVICE, TROUBLESHOOTING, REPAIR, TESTING. 160
22.1 General information, personnel qualification .. 160
22.2 Replacing components of the humidifying / dehumidifying system (chamber with active
humidification) ... 161
22.2.1 Replacing the silicone tube of the fresh water supply system 161
22.2.2 Replacing the pump head of the fresh water supply system 161
22.2.3 Replacing the gas fine filter (sterile filter) for ambient air 161
22.3 Replacing the CO₂ und O₂/N₂ gas inlet fine filters (sterile filters) 162
22.4 Replacing the CO₂ sensor .. 163
22.5 Maintenance intervals, service .. 164
22.6 Simple troubleshooting .. 165
22.6.1 General ... 165
22.6.2 Heating .. 166
22.6.3 Gas cylinder pressure too low .. 167
22.6.4 Gas concentration ... 168
22.6.5 Sterilization .. 170
22.6.6 Humidity (chamber without active humidification) .. 170
22.6.7 Humidity (chamber with active humidification) ... 171
22.6.8 Controller .. 171
22.6.9 Open door .. 172
22.7 Sending the chamber back to BINDER GmbH ... 172

23. DISPOSAL .. 173
23.1 Disposal of the transport packing .. 173
23.1.1 Outer chamber packing ... 173
23.1.2 Packing inside the chamber and equipment .. 173
23.2 Decommissioning ... 174
23.3 Disposal of the chamber in the Federal Republic of Germany 174
23.4 Disposal of the chamber in the member states of the EU except for the Federal Republic of
Germany ... 175
23.5 Disposal of the chamber in non-member states of the EU ... 176
24. TECHNICAL DESCRIPTION ... 177

24.1 Factory calibration and adjustment ... 177
24.2 Over current protection .. 177
24.3 Definition of usable volume .. 178
24.4 CB / CB-UL technical data ... 178
24.5 Equipment and Options (extract) .. 181
24.6 Accessories and spare parts (extract) ... 182
24.7 Important conversion data for non-SI units ... 185
24.8 Conversion table for gas inlet pressures, bar – psi ... 185
24.9 Dimensions .. 186
 24.9.1 CB / CB-UL 170 .. 186
 24.9.2 CB / CB-UL 260 .. 187

25. CERTIFICATES AND DECLARATIONS OF CONFORMITY 188

25.1 EU Declaration of conformity ... 188

26. PRODUCT REGISTRATION .. 190

27. CONTAMINATION CLEARANCE CERTIFICATE 191

27.1 For chambers located outside the USA and Canada .. 191
27.2 For chambers in the USA and Canada .. 194
Dear customer,

For the correct operation of the CO₂ incubator CB, it is important that you read this operating manual completely and carefully and observe all instructions as indicated. Failure to read, understand and follow the instructions may result in personal injury. It can also lead to damage to the chamber and/or poor equipment performance.

1. Safety

1.1 Personnel Qualification

The chamber must only be installed, tested, and started up by personnel qualified for assembly, startup, and operation of the chamber. Qualified personnel are persons whose professional education, knowledge, experience and knowledge of relevant standards allow them to assess, carry out, and identify any potential hazards in the work assigned to them. They must have been trained and instructed, and be authorized, to work on the chamber.

The chamber should only be operated by laboratory personnel especially trained for this purpose and familiar with all precautionary measures required for working in a laboratory. Observe the national regulations on minimum age of laboratory personnel.

1.2 Operating manual

This operating manual is part of the components of delivery. Always keep it handy for reference in the vicinity of the chamber. If selling the unit, hand over the operating manual to the purchaser.

To avoid injuries and damage observe the safety instructions of the operating manual. Failure to follow instructions and safety precautions can lead to significant risks.

DANGER

Dangers due to failure to observe the instructions and safety precautions.

Serious injuries and chamber damage. Risk of death.

- Observe the safety instructions in this Operating Manual.
- Follow the operating procedures in this Operating Manual.
- Carefully read the complete operating instructions of the chamber prior to installing and using the chamber.
- Keep the operating manual for future reference.

Make sure that all persons who use the chamber and its associated work equipment have read and understood the Operating Manual.

This Operating Manual is supplemented and updated as needed. Always use the most recent version of the Operating Manual. When in doubt, call the BINDER Service Hotline for information on the up-to-dateness and validity of this Operating Manual.

1.3 Legal considerations

This operating manual is for informational purposes only. It contains information for correct and safe installing, start-up, operation, decommissioning, cleaning and maintenance of the product. Note: the contents and the product described are subject to change without notice.

Understanding and observing the instructions in this operating manual are prerequisites for hazard-free use and safety during operation and maintenance. Images are to provide basic understanding. They may deviate from the actual version of the chamber. The actual scope of delivery can, due to optional or special design, or due to recent technical changes, deviate from the information and illustrations in these instructions this operating manual.
In no event shall BINDER be held liable for any damages, direct or incidental arising out of or related to the use of this manual.

This operating manual cannot cover all conceivable applications. If you would like additional information, or if special problems arise that are not sufficiently addressed in this manual, please ask your dealer or contact us directly, e.g. by phone at the number located on page one of this manual.

Furthermore, we emphasize that the contents of this operating manual are not part of an earlier or existing agreement, description, or legal relationship, nor do they modify such a relationship. All obligations on the part of BINDER derive from the respective purchase contract, which also contains the entire and exclusively valid statement of warranty administration and the general terms and conditions, as well as the legal regulations valid at the time the contract is concluded. The statements in this manual neither augment nor restrict the contractual warranty provisions.

1.4 Structure of the safety instructions

In this operating manual, the following safety definitions and symbols indicate dangerous situations following the harmonization of ISO 3864-2 and ANSI Z535.6.

1.4.1 Signal word panel

Depending on the probability of serious consequences, potential dangers are identified with a signal word, the corresponding safety color, and if appropriate, the safety alert symbol.

DANGER

Indicates an imminently hazardous situation that, if not avoided, will result in death or serious (irreversible) injury.

WARNING

Indicates a potentially hazardous situation which, if not avoided, could result in death or serious (irreversible) injury.

CAUTION

Indicates a potentially hazardous situation which, if not avoided, may result in moderate or minor (reversible) injury.

NOTICE

Indicates a potentially hazardous situation which, if not avoided, may result in damage to the product and/or its functions or of a property in its proximity.

1.4.2 Safety alert symbol

Use of the safety alert symbol indicates a risk of injury.

Observe all measures that are marked with the safety alert symbol in order to avoid death or injury.
1.4.3 Pictograms

Warning signs

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Electrical hazard</td>
</tr>
<tr>
<td></td>
<td>Hot surface</td>
</tr>
<tr>
<td></td>
<td>Explosive atmosphere</td>
</tr>
<tr>
<td></td>
<td>Stability hazard</td>
</tr>
<tr>
<td></td>
<td>Lifting hazard</td>
</tr>
<tr>
<td></td>
<td>Gas cylinders</td>
</tr>
<tr>
<td></td>
<td>Suffocation hazard</td>
</tr>
<tr>
<td></td>
<td>CO₂ suffocation and poisoning hazard</td>
</tr>
<tr>
<td></td>
<td>Explosive substances</td>
</tr>
<tr>
<td></td>
<td>Fire promoting agents</td>
</tr>
<tr>
<td></td>
<td>Harmful substances</td>
</tr>
<tr>
<td></td>
<td>Risk of corrosion and / or chemical burns</td>
</tr>
<tr>
<td></td>
<td>Biohazard</td>
</tr>
<tr>
<td></td>
<td>Pollution Hazard</td>
</tr>
<tr>
<td></td>
<td>Magnetic field</td>
</tr>
</tbody>
</table>

Mandatory action signs

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mandatory regulation</td>
</tr>
<tr>
<td></td>
<td>Read operating instructions</td>
</tr>
<tr>
<td></td>
<td>Disconnect the power plug</td>
</tr>
<tr>
<td></td>
<td>Lift with several persons</td>
</tr>
<tr>
<td></td>
<td>Environment protection</td>
</tr>
<tr>
<td></td>
<td>Wear protective gloves</td>
</tr>
<tr>
<td></td>
<td>Wear safety goggles</td>
</tr>
</tbody>
</table>

Prohibition signs

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Do NOT touch</td>
</tr>
<tr>
<td></td>
<td>Do NOT spray with water</td>
</tr>
</tbody>
</table>

Information to be observed in order to ensure optimum function of the product.
1.4.4 Word message panel structure

<table>
<thead>
<tr>
<th>Type / cause of hazard.</th>
<th>Possible consequences.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>➢ Instruction how to avoid the hazard: prohibition</td>
</tr>
<tr>
<td></td>
<td>➢ Instruction how to avoid the hazard: mandatory action</td>
</tr>
</tbody>
</table>

Observe all other notes and information not necessarily emphasized in the same way, in order to avoid disruptions that could result in direct or indirect injury or property damage.

1.5 Localization / position of safety labels on the chamber

The following labels are located on the chamber:

<table>
<thead>
<tr>
<th>Pictograms (Warning signs)</th>
<th>Service label</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Hot surface</td>
<td></td>
</tr>
<tr>
<td>• on the outer chamber door</td>
<td></td>
</tr>
<tr>
<td>Risk of injury</td>
<td></td>
</tr>
<tr>
<td>• on the outer door: CB-UL only</td>
<td></td>
</tr>
<tr>
<td>• above the access ports (option)</td>
<td></td>
</tr>
<tr>
<td>Magnetic field</td>
<td></td>
</tr>
<tr>
<td>• on the outer door above the door handle</td>
<td></td>
</tr>
</tbody>
</table>

![Figure 1: Position of labels on the chamber](image)

CO₂ incubator CB

CO₂ incubator CB-UL
CO₂ incubator CB with active humidification

Figure 2: Position of additional labels on the chamber with active humidification

Keep safety labels complete and legible.

Replace safety labels that are no longer legible. Contact BINDER service for these replacements.

1.6 Type plate

Position of type plate: left chamber side (seen from front), at the bottom in the middle

Figure 3: Type plate (example of CB 170 regular chamber)

<table>
<thead>
<tr>
<th>Indications of the type plate (example)</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>BINDER</td>
<td>Manufacturer: BINDER GmbH</td>
</tr>
<tr>
<td>CB 170</td>
<td>Model designation</td>
</tr>
<tr>
<td>CO₂ incubator</td>
<td>Device name</td>
</tr>
<tr>
<td>Serial No.</td>
<td>Serial no. of the chamber</td>
</tr>
<tr>
<td>00000000000000</td>
<td></td>
</tr>
<tr>
<td>Built</td>
<td>Year of construction</td>
</tr>
<tr>
<td>2020</td>
<td></td>
</tr>
<tr>
<td>Nominal temperature</td>
<td>Nominal temperature</td>
</tr>
<tr>
<td>187 °C</td>
<td></td>
</tr>
<tr>
<td>369 °F</td>
<td></td>
</tr>
<tr>
<td>IP protection</td>
<td>IP type of protection acc. to standard EN 60529</td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Temp. safety device</td>
<td>Temperature safety device acc. to standard DIN 12880</td>
</tr>
<tr>
<td>DIN 12880</td>
<td></td>
</tr>
<tr>
<td>Class</td>
<td>Class of temperature safety device</td>
</tr>
<tr>
<td>3.1</td>
<td></td>
</tr>
<tr>
<td>Art. No.</td>
<td>Art. No. of the chamber</td>
</tr>
<tr>
<td>9040-0131</td>
<td></td>
</tr>
<tr>
<td>Project No.</td>
<td>Optional: Special application acc. to project no.</td>
</tr>
<tr>
<td>---</td>
<td></td>
</tr>
<tr>
<td>1,30 kW</td>
<td>Nominal power</td>
</tr>
<tr>
<td>200-230 V / 50 Hz</td>
<td>Nominal voltage range +/-10% at the indicated power frequency</td>
</tr>
<tr>
<td>200-230 V / 60 Hz</td>
<td></td>
</tr>
<tr>
<td>1 N ~</td>
<td>Current type</td>
</tr>
<tr>
<td>5,7 A</td>
<td>Nominal current</td>
</tr>
</tbody>
</table>
1.7 General safety instructions on installing and operating the CO₂ incubator

With regard to operating the chamber and to the installation location, please observe the local and national regulations relevant for your country (for Germany: DGUV guidelines 213-850 on safe working in laboratories, issued by the employers’ liability insurance association).

BINDER GmbH is only responsible for the safety features of the chamber provided skilled electricians or qualified personnel authorized by BINDER perform all maintenance and repair, and if components relating to chamber safety are replaced in the event of failure with original spare parts. To operate the chamber, use only original BINDER accessories or accessories from third-party suppliers authorized by BINDER. The user is responsible for any risk caused by using unauthorized accessories.

NOTICE

Danger of overheating due to lack of ventilation.
Damage to the chamber.
☐ Do NOT install the chamber in unventilated recesses.
➢ Ensure sufficient ventilation for dispersal of the heat.
➢ Observe the prescribed minimum distances when installing the chamber (chap. 3.4).

Do not install or operate the chamber in hazardous locations.

DANGER

Danger of explosion due to combustible dusts or explosive mixtures in the vicinity of the chamber.
Serious injury or death from burns and / or explosion pressure.
☐ Do NOT operate the chamber in potentially explosive areas.
➢ KEEP combustible dust or air-solvent mixtures AWAY from the chamber.

The chamber does not dispose of any measures of explosion protection.

DANGER

Danger of explosion due to introduction of flammable or explosive substances in the chamber.
Serious injury or death from burns and / or explosion pressure.
☐ Do NOT introduce any substance into the chamber which is combustible or explosive at working temperature.
☐ Do NOT introduce any combustible dust or air-solvent mixture in the inner chamber.
Any solvent contained in the charging material must not be explosive or inflammable. I.e., irrespective of the solvent concentration in the steam room, NO explosive mixture with air must form. The temperature inside the chamber must lie below the flash point or below the sublimation point of the charging material. Familiarize yourself with the physical and chemical properties of the charging material, as well as the contained moisture constituent and its behavior with the addition of heat energy and humidity (chamber with active humidification).

Familiarize yourself with any potential health risks caused by the charging material, the contained moisture constituent or by reaction products which may arise during the temperature process. Take adequate measures to exclude such risks prior to putting the chamber into operation.

WARNING

Danger of intoxication and infection through contamination of the chamber with toxic, infectious or radioactive substances.

Damages to health.
- Protect the interior of the chamber from contamination by toxic, infectious or radioactive substances.
- Take suitable protective measures when introducing and removing toxic, infectious or radioactive material.

DANGER

Electrical hazard by water entering the chamber.

Deadly electric shock.
- The chamber must NOT become wet during operation, cleaning, or maintenance.
- Do NOT install the chamber in damp areas or in puddles.
- Set up the chamber in a splash-proof manner.

The chambers were produced in accordance with VDE regulations and were routinely tested in accordance to VDE 0411-1 (IEC 61010-1).

During and after a sterilization the temperature of the inner surfaces almost equals the set-point. The inner doors, the inner door and glass door handles, and the inner chamber will become hot during a sterilization.

CAUTION

Danger of burning by touching hot chamber parts during or after a sterilization.

Burns.
- Do NOT touch the inner surfaces, inner doors, inner door handles, and door gaskets during or after a sterilization.

WARNING

Danger of injury and damages by the chamber tipping over.

Injuries and damage to the chamber and the charging material
- Do NOT load the chamber door with heavy objects while it is open.
The chamber is equipped with a permanent magnet located behind the inner panel of the outer chamber door. If persons with active implants (e.g. pacemakers, defibrillators) keep a sufficient safe distance (distance of field source to implant), an influence of these implants can be excluded with high probability.

WARNING

Magnets can affect the function of pacemakers and implanted defibrillators. A pacemaker can be put into test mode and cause discomfort. A defibrillator may not work anymore.
- If you wear such devices, maintain a sufficient safety distance to the chamber door in the area of the door handle.
- Warn wearers of such devices of approaching the chamber door.

1.8 Precautions when working with gases

Notes on handling carbon dioxide (CO₂)

Carbon dioxide (CO₂) in high concentrations is hazardous to health. It is colorless and almost odorless and therefore practically imperceptible. Vent out any CO₂ gas that may escape via good room ventilation or a suitable connection to an exhaust system. We recommend installing a CO₂ warning system.

DANGER

Danger of suffocation and poisoning by high concentration of CO₂ (> 4 Vol.-%). Death by suffocation.
- Do NOT set up chambers in non-ventilated recesses.
- Ensure technical ventilation measures.
- Observe the relevant regulations for handling CO₂.
- Close the CO₂ supply when decommissioning the chamber.

Chamber with O₂ control: Notes on handling oxygen (O₂)

Oxygen (O₂) is colorless and almost odorless and therefore practically imperceptible. It promotes burns, which can proceed explosively. There is a fire hazard for flammable oxygenated materials, e.g. clothes and hair. O₂ is heavier than air and may accumulate in low-lying areas.

DANGER

Danger of fire and explosion through contact of combustible materials with O₂ with high concentration of O₂ (> 21 % O₂). Serious injury or death from burns and / or explosion pressure.
- Do NOT set up chambers in non-ventilated recesses.
- Ensure technical ventilation measures.
- Observe the relevant regulations for handling O₂.
- Close the O₂ supply when decommissioning the chamber.
Take appropriate measures to prevent oxygen enrichment and fire and explosion hazards in areas where oxygen enrichment is possible.

General information for safe handling of oxygen:
- Make sure training of personnel on hazards of oxygen enrichment and necessary safety measures.
- Make sure adequate labeling of all oxygen equipment and facilities.
- Make sure gas tightness of all gas connections by checking them for leaks (e.g. with leak spray or diluted soap solution).
- Close the main valve of the source of oxygen after work when not using the chamber.
- Never lubricate O₂ equipment with oil or fat. Use only materials and spare parts which are approved for use with oxygen.
- Regularly inspect fire extinguishers for proper condition.
- Set up emergency showers where oxygen enrichment is possible.
- Strictest smoking ban and no ignition sources in areas where oxygen enrichment is possible.
- Make sure good ventilation of areas where oxygen enrichment is possible (location of the chamber and/or O₂ cylinders).
- Persons who may have been in a possibly oxygen-enriched atmosphere must keep away from ignition sources (flames, cigarettes, etc.) and ventilate their clothes at least 15 minutes.
- Always keep emergency routes free.

Chamber with O₂ control: Notes on handling nitrogen (N₂)

Nitrogen (N₂) in high concentrations is hazardous to health. It is colorless and almost odorless and therefore practically imperceptible. Any N₂ gas that may escape must be safely led out via good room ventilation or a suitable connection to an exhaust system.

<table>
<thead>
<tr>
<th>DANGER</th>
</tr>
</thead>
</table>
| Risk of suffocation through high concentration of N₂.
Death by suffocation.
☐ Do NOT set up chambers in non-ventilated recesses.
➢ Ensure technical ventilation measures.
➢ Observe the relevant regulations for handling N₂.
➢ Close the N₂ supply when decommissioning the chamber. |
1.9 Precautions when handling gas cylinders

<table>
<thead>
<tr>
<th>General information for safe handling of gas cylinders:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Store and use gas cylinders only in well-ventilated locations.</td>
</tr>
<tr>
<td>• Open the gas cylinder valve slowly to avoid pressure surges.</td>
</tr>
<tr>
<td>• Secure gas cylinders during storage and use against falling (chaining).</td>
</tr>
<tr>
<td>• Transport gas cylinders with a cylinder cart, do not carry, roll, or throw them.</td>
</tr>
<tr>
<td>• Always close the valve even with apparently empty cylinders; screw on the cap when not in use. Return gas cylinders with the valve closed.</td>
</tr>
<tr>
<td>• Do not open gas cylinders by force. Mark them when damaged.</td>
</tr>
<tr>
<td>• Protect gas cylinders against fire, e.g. do not store together with flammable liquids.</td>
</tr>
<tr>
<td>• Observe relevant regulations for dealing with gas cylinders.</td>
</tr>
</tbody>
</table>

Secure the gas cylinders against falling and other mechanical damage.

<table>
<thead>
<tr>
<th>WARNING</th>
<th>Risk of injury through sudden release of the stored pressure energy when the valve safety is torn off.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Injuries.</td>
<td></td>
</tr>
<tr>
<td>➢ Secure gas cylinders against falling (chaining).</td>
<td></td>
</tr>
<tr>
<td>➢ Transport gas cylinders with a cylinder cart.</td>
<td></td>
</tr>
</tbody>
</table>

The valve of the gas cylinder **always** must be closed before screwing on or unscrewing the gas hose.

<table>
<thead>
<tr>
<th>WARNING</th>
<th>Risk of injury through sudden release of the stored pressure energy when opening the cylinder valve of a not connected cylinder.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Injuries.</td>
<td></td>
</tr>
<tr>
<td>➢ Close the gas cylinder valve before connecting or removing the gas hose.</td>
<td></td>
</tr>
</tbody>
</table>

After connecting the gas cylinder, check all gas connections for leaks (e.g. with leak spray or diluted soap solution).
1.10 Intended use

Following the instructions in this operating manual and conducting regular maintenance work (chap. 22.5) are part of the intended use.

Any use of the chambers that does not comply with the requirements specified in this Operating Manual shall be considered improper use.

Other applications than those described in this chapter are not approved.

Use

CB / CB-UL incubators are suitable for the cultivation of mammal cells under typical conditions of approx. 37 °C / 98.6°F. The chamber permits setting defined pH conditions by common NaHCO₃ buffer systems of commercial cell media by keeping an exact CO₂ atmosphere inside. The chambers guarantee high humidity inside to avoid osmolarity increasing caused by the evaporation of the cell media.

With the chamber with O₂ control, a variable oxygen atmosphere can additionally influence the growth of the cells.

The chambers are suitable for exact conditioning of harmless materials.

Requirements for the chamber load

Any solvent must not be explosive and flammable. Components of the charging material must NOT form an explosive mixture with air. The operating temperature must lie below the flash point or below the sublimation point of the charging material. Any component of the charging material must NOT be able to release toxic gases.

The charging material shall not contain any corrosive ingredients that may damage the machine components made of stainless steel, aluminum, and copper. Such ingredients include in particular acids and halides. Any corrosive damage caused by such ingredients is excluded from liability by BINDER GmbH.

The chamber does not dispose of any measures of explosion protection.

DANGER

Explosion or implosion hazard and danger of poisoning through the introduction of unsuitable loading material.

Poisoning. Serious injury or death from burns and / or explosion pressure.

∅ Do NOT introduce any substance combustible or explosive at working temperature into the chamber, in particular no energy sources such as batteries or lithium-ion batteries.

∅ NO explosive dust or air-solvent mixture in the inner chamber.

∅ Do NOT introduce any substance which could lead to release of toxic gases.

Contamination of the chamber by toxic, infectious or radioactive substances must be prevented

WARNING

Danger of intoxication and infection through contamination of the chamber with toxic, infectious or radioactive substances.

Damages to health.

➢ Protect the interior of the chamber from contamination by toxic, infectious or radioactive substances.

➢ Take suitable protective measures when introducing and removing toxic, infectious or radioactive material.
In case of foreseeable use of the chamber there is no risk for the user through the integration of the chamber into systems or by special environmental or operating conditions in the sense of EN 61010-1:2010. For this, the intended use of the chamber and all its connections must be observed.

Medical devices

The chambers are not classified as medical devices as defined by the Medical Device Directive 93/42/EEC.

Due to the special demands of the Medical Device Directive (MDD), these chambers are not qualified for sterilization of medical devices as defined by the directive 93/42/EWG.

Personnel Requirements

Only trained personnel with knowledge of the Operating Manual can set up and install the chamber, start it up, operate, clean, and take it out of operation. Service and repairs call for further technical requirements (e.g. electrical know-how), as well as knowledge of the service manual.

Installation site requirements

The chambers are designed for setting up inside a building (indoor use).

The requirements described in the Operating Manual for installation site and ambient conditions (Chap. 3.4) must be met.

WARNING: If customer should use a BINDER chamber running in non-supervised continuous operation, we strongly recommend in case of inclusion of irrecoverable specimen or samples to split such specimen or samples and store them in at least two chambers, if this is feasible.

Relevant regulations for dealing with CO₂ and gas cylinders must be observed.

1.11 Foreseeable Misuse

Other applications than those described in chap. 1.10 are not approved.

This expressly includes the following misuses (the list is not exhaustive), which pose risks despite the inherently safe construction and existing technical safety equipment:

- Non-observance of Operating Manual
- Non-observance of information and warnings on the chamber (e.g. control unit messages, safety identifiers, warning signals)
- Installation, startup, operation, maintenance and repair by untrained, insufficiently qualified, or unauthorized personnel
- Missed or delayed maintenance and testing
- Non-observance of traces of wear and tear
- Insertion of materials excluded or not permitted by this Operating Manual.
- Non-compliance with the admissible parameters for processing the respective material.
- Failure to comply with the relevant regulations for handling gas cylinders
- Failure to comply with the relevant regulations for handling CO₂, O₂ or N₂
- Operation of the chamber without ventilation measures
- Installation, testing, service or repair in the presence of solvents
- Installation of replacement parts and use of accessories and operating resources not specified and authorized by the manufacturer
- Installation, startup, operation, maintenance or repair of the chamber in absence of operating instructions
• Bypassing or changing protective systems, operation of the chamber without the designated protective systems
• Non-observance of messages regarding cleaning and disinfection of the chamber.
• Spilling water or cleaning agent on the chamber, water penetrating into the chamber during operation, cleaning or maintenance.
• Cleaning activity while chamber is turned on.
• Operation of the chamber with a damaged housing or damaged power cord.
• Continued operation of the chamber during an obvious malfunction
• Insertion of objects, particularly metallic objects, in louvers or other openings or slots on the chamber
• Human error (e.g. insufficient experience, qualification, stress, exhaustion, laziness)

To prevent these and other risks from incorrect operation, it is recommended the operator issue operating instructions and standard operating procedures (SOPs).

1.12 Residual Risks

The unavoidable design features of a chamber, as well as its proper field of application, can also pose risks, even during correct operation. These residual risks include hazards which, despite the inherently safe design, existing technical protective equipment, safety precautions and supplementary protective measures, cannot be ruled out.

Messages on the chamber and in the Operating Manual warn of residual risks. The consequences of these residual risks and the measures required to prevent them are listed in the Operating Manual. Moreover, the operator must take measures to minimize hazards from unavoidable residual risks. This includes, in particular, issuing operating instructions.

The following list summarizes the hazards against which this Operating Manual and the Service Manual warn, and specifies protective measures at the appropriate spots:

Unpacking, Transport, Installation

• Sliding or tilting the chamber
• Setup of the chamber in unauthorized areas
• Installation of a damaged chamber
• Installation of a chamber with damaged power cord
• Inappropriate site of installation
• Missing protective conductor connection

Normal operation

• Assembly errors
• Contact with hot surfaces on the housing
• Contact with hot surfaces in the interior and inside of doors
• Emission of non-ionizing radiation from electrical operating resources
• Contact with live parts in normal state

Cleaning and Decontamination

• Penetration of water into the chamber
• Inappropriate cleaning and decontamination agents
• Enclosure of persons in the interior
Malfunction and Damage
 • Continued operation of the chamber during an obvious malfunction or outage of the heating, gas, or humidifying systems
 • Contact with live parts during error status
 • Operation of a unit with damaged power cord

Maintenance
 • Maintenance work on live parts.
 • Execution of maintenance work by untrained/insufficiently qualified personnel
 • Electrical safety analysis during annual maintenance not performed

Trouble-shooting and Repairs
 • Non-observance of warning messages in the Service Manual
 • Trouble-shooting of live parts without specified safety measures
 • Absence of a plausibility check to rule out erroneous inscription of electrical components
 • Performance of repair work by untrained/insufficiently qualified personnel
 • Inappropriate repairs which do not meet the quality standard specified by BINDER
 • Use of replacement parts other than BINDER original replacement parts
 • Electrical safety analysis not performed after repairs

1.13 Operating instructions

Depending on the application and location of the chamber, it is recommended that the operator of the chamber provides the relevant information for safe operation of the chamber in a set of operating instructions.

Keep these operating instructions with the chamber at all times in a place where they are clearly visible. They must be comprehensible and written in the language of the employees.
1.14 Measures to prevent accidents

The manufacturer took the following measures to prevent dangers:

- **Indications on the type plate**
 See operating manual chap. 1.6.

- **Operating manual**
 An operating manual is available for each chamber.

- **Overtemperature monitoring**
 The chamber is equipped with a temperature display, which can be read from outside.
 The chamber is equipped with an additional safety controller (temperature safety device class 3.1 acc. to DIN 12880:2007). Visual and audible (buzzer) signals indicate temperature exceeding.

- **Safety, measurement, and control equipment**
 The safety, measuring, and control equipment is easily accessible.

- **Electrostatic charge**
 The interior parts are grounded.

- **Non-ionizing radiation**
 Non-ionizing radiation is not intentionally produced, but released only for technical reasons by electrical equipment (e.g. power cables). The chamber is equipped with a permanent magnet located behind the inner panel of the outer chamber door. If persons with active implants (e.g. pacemakers, defibrillators) keep a sufficient safe distance (distance of field source to implant), an influence of these implants can be excluded with high probability.

 WARNING
 Magnets can affect the function of pacemakers and implanted defibrillators. A pacemaker can be put into test mode and cause discomfort. A defibrillator may not work anymore.
 - If you wear such devices, maintain a sufficient safety distance to the chamber door in the area of the door handle.
 - Warn wearers of such devices of approaching the chamber door.

- **Protection against touchable surfaces**
 Tested according to EN ISO 13732-1:2008.

- **Floors**
 See operating manual chap. 3.4 for correct installation

- **Cleaning**
 See operating manual chap. 21.
1.15 Resistance of the humidity sensor against harmful substances

The following list of harmful substances refers only to the humidity sensor and does not include any other materials incorporated in the chamber or prohibited substances in relation to explosion protection.

Some gases - especially clean gases - do not have any influence on the humidity sensor. Others do have a very small influence, whereas others may influence the sensor to a larger extent.

- The following gases do not influence the sensor and the humidity measurement: Argon (Ar), carbon dioxide (CO₂), helium (He), hydrogen (H₂), neon (Ne), nitrogen (N₂), nitrous oxide (N₂O), oxygen (O₂)
- The following gases do not or to a minor extent influence the sensor and the humidity measurement: Butane (C₄H₁₀), ethane (C₂H₆), methane (CH₄), natural gas propane (C₃H₈)
- The following gases do not, or to a minor extent influence the sensor and the humidity measurement, provided that the indicated loads are not exceeded:

<table>
<thead>
<tr>
<th>Substance</th>
<th>Formula</th>
<th>Maximum work place threshold limit value</th>
<th>Tolerated concentration with permanent load</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ppm</td>
<td>mg/m³</td>
</tr>
<tr>
<td>Ammonia</td>
<td>NH₃</td>
<td>20</td>
<td>14</td>
</tr>
<tr>
<td>Acetone</td>
<td>CH₃COCH₃</td>
<td>500</td>
<td>1200</td>
</tr>
<tr>
<td>Benzene</td>
<td></td>
<td>300</td>
<td>1200</td>
</tr>
<tr>
<td>Chlorine</td>
<td>Cl₂</td>
<td>0.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Acetic acid</td>
<td>CH₃COOH</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>Ethyl acetate</td>
<td>CH₃COOC₂H₅</td>
<td>400</td>
<td>1400</td>
</tr>
<tr>
<td>Ethanol</td>
<td>C₂H₅OH</td>
<td>500</td>
<td>960</td>
</tr>
<tr>
<td>Ethylene glycol</td>
<td>HOCH₂CH₂OH</td>
<td>10</td>
<td>26</td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>HCHO</td>
<td>0.3</td>
<td>0.37</td>
</tr>
<tr>
<td>Isopropanol</td>
<td>(CH₃)₂CHOH</td>
<td>200</td>
<td>500</td>
</tr>
<tr>
<td>Methanol</td>
<td>CH₃OH</td>
<td>200</td>
<td>260</td>
</tr>
<tr>
<td>Methyl ethyl ketone</td>
<td>C₂H₅COCH₃</td>
<td>200</td>
<td>590</td>
</tr>
<tr>
<td>Ozone</td>
<td>O₃</td>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>Hydrochloric acid</td>
<td>HCl</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Hydrogen sulphide</td>
<td>H₂S</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>Nitrogen oxides</td>
<td>NOx</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>Sulphur dioxide</td>
<td>SO₂</td>
<td>5</td>
<td>13</td>
</tr>
<tr>
<td>Toluol</td>
<td>C₆H₅CH₃</td>
<td>100</td>
<td>380</td>
</tr>
<tr>
<td>Xylene</td>
<td>C₆H₄(CH₃)₂</td>
<td>100</td>
<td>440</td>
</tr>
</tbody>
</table>

These values are to be considered as approximate values. The sensor resistance largely depends on the temperature and humidity conditions during the time of exposure to harmful substances. Avoid simultaneous condensation. Tolerated error of measurement: ± 2 %r.H. The maximum work place threshold limit value is one that can be regarded as harmless for humans.

- Vapors of oil and fat are dangerous for the sensor because they may condensate at the sensor and thus prevent its function (insulating layer). For similar reasons it is not possible to measure smoke gases.
2. Chamber description

The CO₂ incubators CB / CB-UL are equipped with a multifunctional microprocessor display controller for temperature, CO₂, and O₂ (chamber with O₂ control) levels and humidity (chamber with active humidification) and a digital display accurate to one-tenth of a degree resp. 0.1 vol.-%. With its comprehensive program control functions, the display program controller MB2 permits the high precision performance of temperature, CO₂, O₂ (chamber with O₂ control), and humidity (chamber with active humidification) cycles.

Material: The inner chamber, the pre-heating chamber and the inside of the doors are all made of stainless steel V2A (German material no. 1.4301, US equivalent AISI 304). The inner surfaces are smooth and therefore easy to clean. The inner chamber is deep-drawn from one piece, polished (suitable for pharmaceutical applications) and has no welds or inaccessible corners. The hinges and the seal of the inner glass door are glued from the outside to aid cleaning of the inner chamber. When operating the chamber at high temperatures (sterilization), the impact of the oxygen in the air may cause discoloration of the metallic surfaces (yellowish-brown or blue) by natural oxidation processes. These colorations are harmless and will in no way impair the function or quality of the chamber. The perforated shelves are also made of stainless steel. You can insert a maximum of 3 (CB / CB-UL 56), 6 (CB / CB-UL 170), resp. 8 (CB / CB-UL 220) shelves. The housing is RAL 7035 powder-coated. All corners and edges are also completely coated.

Door lock: The DuoDoor™ door lock offers two to open the outer door and glass door independently or together. The outer door is regularly equipped with a door lock with keys. The standard chamber door is hinged right. The chamber is optionally available with door hinged left.

Sterilization: The chamber’s heating system permits hot-air auto-sterilization at a setpoint of 187.5 °C / 369.5°F. Thus, a temperature of 180 °C / 356°F is maintained for at least 30 minutes on all internal surfaces, resulting in sterilization of the entire inner chamber. Therefore, this procedure meets all international guidelines regarding hot air sterilization, e.g. AAMI ST63, DIN 58947, European Pharmacopoeia.

Temperature safety device Thanks to the regular safety controller (temperature safety device class 3.1 acc. to DIN 12880:2007), the set temperature is maintained in case of failure.

CO₂ system: A highly precise, drift-free CO₂ infrared measuring system in combination with the permanent mixture of CO₂ gas through a special proprietary gas mixing head developed by BINDER allows precise and constant CO₂ concentrations for long periods. This creates optimum growth conditions for cultures. The gas enters the chamber via a fine filter (aseptic filter) with a high filtration efficiency that also filters the smallest particles.

Fast reaction times, maximum accuracy and selectivity characterize the CO₂ measuring procedure of the CB / CB-UL incubator. The accuracy of the CO₂ measuring system is based on an infrared measuring cell with NDIR (non-dispersive infrared) sensor, which continuously regulates to a reference value. Therefore, disturbance variables and aging phenomena in the measuring system are almost completely eliminated, so that this measuring system, in contrast to other measuring procedures, remains practically drift-free between calibrations and is entirely selective for CO₂. The sensor is built into the chamber and can be sterilized.

O₂ control (chamber with O₂ control): The CO₂ incubator is available with O₂ control in addition to CO₂ control. There are two different control ranges:

- **Regular equipment:** Hypoxic control range 0.2 to 20 vol. % O₂. Only N₂ can be connected to reduce O₂ concentration; it is not possible to connect O₂ gas bottles to increase O₂ concentration. Control in the low O₂ range is very precise, in particular in the range below 1 vol. % O₂.

- **Alternative control range 10 to 95 vol. % O₂ (option).** Although the high control range is intended in particular for hyperoxic applications (> 21 vol. % O₂), it is also suitable for slightly hypoxic applications between 10 and 20 vol. % O₂.

The O₂ sensor is a semiconductor gas sensor with ZrO₂ ceramic.
Humidity control (chamber with active humidification): The chamber is available with humidity control and a microprocessor-controlled humidification system.

Freshwater is supplied by manually filling a freshwater bag, which is placed behind the chamber door in a recess.

A resistance humidifying system humidifies the air. For this purpose, use deionized (demineralized) water. The option BINDER Pure Aqua Service allows using the chamber with any degree of water hardness.

Controller: The efficient program controller is equipped with a multitude of operating functions, in addition to recorder and alarm functions. Programming of test cycles is easily accomplished via the modern MB2 touch screen controller and is also possible directly with a computer via Intranet in connection with the APT-COM™ 4 Multi Management Software (option, chap. 18.1). The chambers are equipped with an Ethernet interface for computer communication. The APT-COM™ 4 Multi Management Software permits networking up to 30 chambers and connecting them to a PC for controlling and programming, as well as recording and representing temperature, CO₂ and O₂ and humidity data. For further options, see chap. 24.5.

<table>
<thead>
<tr>
<th></th>
<th>Chamber without active humidification</th>
<th>Chamber with active humidification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature range:</td>
<td>4 °C / 7.2 °F above ambient temperature up to +60 °C / 140 °F</td>
<td>5 °C / 9 °F above ambient temperature up to +60 °C / 140 °F</td>
</tr>
<tr>
<td>Temperature range (chamber with O₂ control):</td>
<td>6 °C / 10.8 °F above ambient temperature up to +60 °C / 140 °F</td>
<td>7 °C / 12.6 °F above ambient temperature up to +60 °C / 140 °F</td>
</tr>
<tr>
<td>CO₂ range:</td>
<td>0 vol.-% up to 20 vol.-%</td>
<td></td>
</tr>
<tr>
<td>O₂ range (chamber with O₂ control):</td>
<td>0.2 vol.-% up to 20 vol.-% (hypoxic control range)</td>
<td>or 10 vol.-% up to 95 vol.-% (optional alternative control range)</td>
</tr>
<tr>
<td>Humidity range (chamber with active humidification):</td>
<td>50 % r.h. up to 95 % r.h.</td>
<td></td>
</tr>
</tbody>
</table>

2.1 Chamber overview

![Figure 4: CO₂ incubator CB / CB-UL (example: model CB 170)](image)
2.2 Inner chamber

Figure 5: CB 170 with O₂ control, active humidification, and options

(A) Instrument panel with microprocessor program controller MB2, indicating temperature, CO₂, O₂ (chamber with O₂ control) and humidity (chamber with active humidification)

(B) Connection socket for extra-low voltage supply (option, chap. 18.7)

(C) CO₂ sensor

(D) Gas mixing head CO₂

(D2) Additional gas mixing head O₂/ N₂ (chamber with O₂ control)

(E) Pt 100 temperature probe

(F) O₂ sensor (chamber with O₂ control)

(G) Humidity sensor (chamber with active humidification)

(H) Internal socket 230V (max. 3 A) (option, available via BINDER INDIVIDUAL Customized Solutions, chap. 18.4)

(I) Perforated shelves, made of stainless steel

(J) Glass door handle

(K) Measuring access port

(L) Inner glass doors

(M) Permadry™ water pans
2.3 Control panel on the rear of the chamber

Figure 6: Rear control panel CB with O₂ control and options

Figure 7: Rear control panel CB-UL with O₂ control and options

(1a) Socket for IEC connector plug / power cable 100-120 V AC
(1b) Socket for IEC connector plug / power cable 230 V AC
(2) External socket for extra-low voltage supply (option for CB / CB-UL 170 / 220, chap. 18.7)
(3) DIN-socket for zero-voltage relay alarm outputs
(4) DIN socket for analog outputs 4-20 mA (option, chap. 18.5)
(5) Ethernet interface for computer communication
(6a) Miniature fuse T12,5 A (L) 250 V AV for 100-120 V chamber
(6b) Miniature fuse T10 A (L) 250 V AC for 200-230 V chamber
(7) Miniature fuse T10 A (L) 250 V AC for 200-230 V chamber
2.4 Instrument panel

![MB2 controller display](image)

- MB2 controller display 5.7" with touchscreen
- USB interface
- Pilot lamp

Figure 8: Instrument panel with MB2 program controller and USB interface

3. Completeness of delivery, transportation, storage, and installation

3.1 Unpacking, and checking equipment and completeness of delivery

After unpacking, please check the chamber and its optional accessories, if any, based on the delivery receipt for completeness and for transportation damage. Inform the carrier immediately if transportation damage has occurred.

The final tests of the manufacturer may have caused traces of the shelves on the inner surfaces. This has no impact on the function and performance of the chamber.

Please remove any transportation protection devices and adhesives in/on the chamber and on the doors and remove the operating manuals and accessory equipment.

Remove any protective lamination sheet on the inner metal surfaces prior to commissioning.

⚠️ CAUTION

Risk of injury and damages by lifting heavy loads and by sliding or tilting of the chamber due to improper lifting.

Injuries, damage to the chamber.

- Do NOT lift or transport the chamber using the door handle or the door.
- Lift the chamber from the pallet at the four lower corners with the aid of four people.

If you need to return the chamber, please use the original packing and observe the guidelines for safe lifting and transportation (chap. 3.2).

For disposal of the transport packing, see chap. 23.1.
Note on second-hand chambers (Ex-Demo-Units):
Second-hand chambers are chambers that were used for a short time for tests or exhibitions. They are thoroughly tested before resale. BINDER ensures that the chamber is technically sound and will work flawlessly.
Second-hand chambers are marked with a sticker on the chamber door. Please remove the sticker before commissioning the chamber.

3.2 Guidelines for safe lifting and transportation

After operation, please observe the guidelines for temporary decommissioning (chap. 23.2). Empty the Permadry™ water pan before moving the chamber. In case of any spilling of the contents, shut down the chamber and dry it out carefully and completely.

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk of injury and damages by lifting heavy loads and by sliding or tilting of the chamber due to improper transportation.</td>
</tr>
<tr>
<td>Injuries, damage to the chamber.</td>
</tr>
<tr>
<td>➢ Transport the chamber in its original packaging only.</td>
</tr>
<tr>
<td>➢ For moving or shipping, secure the chamber with transport straps.</td>
</tr>
<tr>
<td>☓ Do NOT lift or transport the chamber using the door handle or the door.</td>
</tr>
<tr>
<td>➢ Lift the chamber at the four lower corners with the aid of 4 people and place it on a rolling pallet.</td>
</tr>
<tr>
<td>➢ Move the chamber to the desired location and lift it from the rolling pallet with the aid of four people.</td>
</tr>
</tbody>
</table>

- Permissible ambient temperature range during transport: 10 °C / 14 °F to +60 °C / 140 °F.
You can order transport packing for moving or shipping purposes from BINDER service.

Permissible ambient temperature range during transport:
- If the humidifying system has NOT been emptied: +3 °C / 37.4 °F to +60 °C / 140 °F.
- After emptying the humidifying system (after sterilization): -10 °C / 14 °F to +60 °C / 140 °F.
With temperatures below +3 °C / 37.4 °F, water must be completely removed from the humidifying system.

<table>
<thead>
<tr>
<th>NOTICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Danger of freezing in the steam generator when transporting the chamber below +3 °C / 37.4 °F with filled steam humidifying system.</td>
</tr>
<tr>
<td>Damage to the chamber.</td>
</tr>
<tr>
<td>➢ Before any transportation below +3 °C / 37.4 °F, empty the freshwater bag to remove water from the humidifying system and perform a sterilization.</td>
</tr>
</tbody>
</table>

3.3 Storage

Intermediate storage of the chamber is possible in a closed and dry room. Observe the guidelines for temporary decommissioning (chap. 23.2).

Permissible ambient temperature range during storage:
- the humidifying system has NOT been emptied: +3 °C / 37.4 °F to +60 °C / 140 °F.
- After emptying the humidifying system (after sterilization): -10 °C / 14 °F to +60 °C / 140 °F
With temperatures below +3 °C / 37.4 °F, water must be completely removed from the humidifying system.
NOTICE

Danger of freezing in the steam generator when storing the chamber below +3 °C / 37.4 °F with filled steam humidifying system.

Damage to the chamber.
- Before any storage below +3 °C / 37.4 °F, empty the freshwater bag to remove water from the humidifying system and perform a sterilization.

Permissible ambient humidity: max. 70 % r.h., non-condensing.

After extensive operation at humidity levels > 70% r.h., condensation from excessive humidity can lead to corrosion during storage. In this case the chamber must first be dried.

NOTICE

Danger of corrosion on the housing due to condensation by excess humidity after operating at humidity values > 70 % r.h. for a long period.

Damage to the chamber.
- Let the chamber dry for several days before shut-down:
 - Empty the Permadry water pan.
 - **Chamber with active humidification:** Turn off humidity control (chap. 6.7).
 - Set the temperature set point to 60 °C / 140 °F for approx. 2 hours.
 - Only then, shut down the chamber at the main power switch (1) and empty the freshwater bag.

When after storage in a cold location you transfer the chamber to its warmer installation site, condensation may form. Before start-up, wait at least one hour until the chamber has attained ambient temperature and is completely dry.

Chamber with active humidification: In case of a prolonged temporal decommissioning: Leave the chamber door open or remove the optional access port plugs.

3.4 Location of installation and ambient conditions

Notes on the location of installation

Set up the chamber on a flat, even surface, free from vibration and in a well-ventilated, dry location. The chambers are designed for setting up inside a building (indoor use).

Freestanding chamber are suitable for installation on tables or on the optionally available stand (height 200 mm / 0.5 ft). Note: The site of installation must be capable of supporting the chamber’s weight (see technical data, chap.24.4).

Align the chamber using a spirit level to ensure even covering of the cell-cultures with the medium. For this purpose, manually adjust the four chamber feet.

The chambers can be stacked on top of each other (two chambers maximum). For safe stacking that is easy to maintain, use the original BINDER stacking stand (chap. 18.9.1) or the base on castors (chap. 18.9.2).

To completely separate the chamber from the power supply, you must disconnect the power plug. Install the chamber in a way that the power plug is easily accessible and can be easily pulled in case of danger.

For the user there is no risk of temporary overvoltages in the sense of EN 61010-1:2010.

In order to avoid contamination, never place the chamber directly on the floor.
NOTICE

Danger of overheating due to lack of ventilation. Damage to the chamber.

- Do NOT install the chamber in unventilated recesses.
- Ensure sufficient ventilation for dispersal of the heat.
- Observe the prescribed minimum distances when installing the chamber.

Do not install or operate the chamber in potentially explosive areas.

DANGER

Danger of explosion due to combustible dusts or explosive mixtures in the vicinity of the chamber.

Serious injury or death from burns and / or explosion pressure.

- Do NOT operate the chamber in potentially explosive areas.
- KEEP explosive dust or air-solvent mixtures AWAY from the vicinity of the chamber.

Ambient conditions

- Permissible ambient temperature range for operation: +18 °C / 64.4 °F to +30 °C / 86 °F

 At elevated ambient temperature values, fluctuations in temperature and humidity may occur.

 Ideal ambient temperature: at least 7 °C / 12.6 °F below the intended working temperature. E.g., working temperature 37 °C / 98.6 °F = ambient temperature 30 °C / 86 °F and lower. In the event of working temperatures of less than 7 °C / 12.6 °F above the ambient temperature, the setpoint can be exceeded.

Do not place the chamber directly below the air outlet of an air conditioner.

The ambient temperature should not be substantially higher than the indicated ambient temperature of 22 +/-3 °C / 71.6 +/-5.4 °F to which the specified technical data relates. For other ambient conditions, deviations from the indicated data are possible.

Avoid direct solar radiation on the chamber. Avoid strong drafts, e.g. by air conditioning.

- Permissible ambient humidity: 70 % r.h. max., non-condensing.
- Installation height: max. 2000 m / 6561.7 ft. above sea level.
- Wall distances: rear 100 mm / 3.94 in, sides 50 mm / 1.97 in.

To completely separate the chamber from the power supply, you must disconnect the power plug. Install the chamber in a way that the power plug is easily accessible and can be easily pulled in case of danger.

Notes on handling carbon dioxide (CO₂)

Carbon dioxide (CO₂) in high concentrations is hazardous to health. It is colorless and almost odorless and therefore practically imperceptible. Vent out any CO₂ gas that may escape via good room ventilation or a suitable connection to an exhaust system. We recommend installing a CO₂ warning system.
Danger of suffocation and poisoning by high concentration of CO₂ (> 4 Vol.-%).
Death by suffocation.
✧ Do NOT set up chambers in non-ventilated recesses.
➢ Ensure technical ventilation measures.
➢ Observe the relevant regulations for handling CO₂.

Observe the occupational exposure limit OEL for CO₂ set by the national authorities (formerly maximum permitted workplace concentration). Check compliance when operating all chambers located in the room.

- OEL for Germany: 5000 ml/m³ (ppm) = 0.5 Vol.-%
- CO₂ lost from CB / CB-UL 170 at 5 vol.-% CO₂ with each opening the door: about 14.8 g, i.e. 0.00758 cubic meters / 0.268 cubic feet (under normal pressure)
- CO₂ lost during 12h at 5 vol.-% without opening the door: approx. < 2 g, i.e. 0.001 cubic meter / 0.035 cubic feet (under normal pressure 1013 mbar / 14.7 psi)

An example of how to evaluate laboratory volume and air change rate:

Question: Is an air change rate of 1/h sufficient for a lab with a volume of 100 cubic meters / 3,531.5 cubic feet with 10 incubators CB / CB-UL 170, opened 4 times per hour?

Calculation: CO₂ concentration = CO₂ lost by opening the door, multiplied by 10 incubators, multiplied by opening the door 4 times per hour, divided by lab volume

0.00758 cubic meters x 10 x 4 div. 100 cubic meters = 0.003032, i.e. 0.303 % or 3032 ppm.

Result: The maximum permissible value of 5000 ppm is not exceeded under these operation conditions.

Even when CO₂ or systems operated with CO₂ are handled carefully and appropriately, a residual risk remains, which can lead to life-threatening situations under certain circumstances. Therefore we strongly recommend continuous monitoring of CO₂ concentration in the ambient air of the CO₂ incubator. It must be ensured permanently that the maximum permissible occupational exposure limit OEL for CO₂ (0.5 vol-% CO₂ for Germany) is not exceeded.

Chamber with O₂ control: Notes on handling oxygen (O₂)

Oxygen (O₂) is colorless and almost odorless and therefore practically imperceptible. It promotes burns, which can proceed explosively. There is a fire hazard for flammable oxygenated materials, e.g. clothes and hair. O₂ is heavier than air and may accumulate in low-lying areas.

Danger of fire and explosion through contact of combustible materials with O₂ with high concentration of O₂ (> 21 % O₂).
Serious injury or death from burns and / or explosion pressure.
✧ Do NOT set up chambers in non-ventilated recesses.
➢ Ensure technical ventilation measures.
➢ Observe the relevant regulations for handling O₂.

Take appropriate measures to prevent oxygen enrichment and fire and explosion hazards in areas where oxygen enrichment is possible.
General information for safe handling of oxygen:

- Make sure training of personnel on hazards of oxygen enrichment and necessary safety measures.
- Make sure adequate labeling of all oxygen equipment and facilities.
- Make sure gas tightness of all gas connections by checking them for leaks (e.g. with leak spray or diluted soap solution).
- Close the main valve of the source of oxygen after work when not using the chamber.
- Never lubricate O₂ equipment with oil or fat. Use only materials and spare parts which are approved for use with oxygen.
- Regularly inspect fire extinguishers for proper condition.
- Set up emergency showers where oxygen enrichment is possible.
- Strictest smoking ban and no ignition sources in areas where oxygen enrichment is possible.
- Make sure good ventilation of areas where oxygen enrichment is possible (location of the chamber and/or O₂ cylinders).
- Persons who may have been in a possibly oxygen-enriched atmosphere must keep away from ignition sources (flames, cigarettes, etc.) and ventilate their clothes at least 15 minutes.
- Always keep emergency routes free.

Chamber with O₂ control: Notes on handling nitrogen (N₂)

Nitrogen (N₂) in high concentrations is hazardous to health. It is colorless and almost odorless and therefore practically imperceptible. Any N₂ gas that may escape must be safely led out via good room ventilation or a suitable connection to an exhaust system.

DANGER

Risk of suffocation through high concentration of N₂.
Death by suffocation.

- Do NOT set up chambers in non-ventilated recesses.
- Ensure technical ventilation measures.
- Observe the relevant regulations for handling N₂.

4. Installation and connections

4.1 Shelves

You can put the shelves in different positions at the line of channel beads in the inner chamber. Hold the shelf straight and then insert it so it will go smoothly inside the chamber.

Permitted shelf loads:

- Maximum load of one single shelf: 10 kg / 22 lb.
- Maximum total load of all shelves: 30 kg / 66 lb.
4.2 Permadry™ water pan

The Permadry™ system developed by BINDER is an effective and easy to handle system that ensures high humidity inside the chamber without any condensation forming on the inner surfaces. The Permadry™ water pan consists of two pans in which the outer one is heated and the inner one cooled. With the slight difference of temperature caused by that cooling, the central pan is the specific point for condensation of the surplus humidity. Therefore, all other inner surfaces remain dry.

- Put the Permadry™ water pan on the bottom of the inner chamber in a way that both notches lock into place.
- The front side of the CB / CB-UL 170 / 220 Permadry™ water pan is marked “FRONT”.
- Please make sure that the Permadry™ water pan has firm contact to the inner chamber bottom and rests tightly on it (notches locked into place).
- Fill only the outer pan with distilled, sterilized water up to the filling level marking on the edge of the inner pan.
 Maximum filling quantity of the outer pan: CB / CB-UL 56: approx. 0.7 liters, CB / CB-UL 170: approx. 1.3 liters, CB / CB-UL 260: approx. 2.0 liters.
- We recommend cleaning and refilling the pans 2 to 3 times a week. For evacuation, remove the Permadry™ water pan.
- We recommend using distilled, sterile water to achieve optimum growth results. Any corrosive damage that may arise following the use of water of different quality or by additives is excluded from the liability agreement.
- If required, you can add microbiologically inhibiting substances such as copper chips, copper sulfate or ethylene diamine tetra-vinegar acid (EDTA) in a concentration of 1 to 5 mmol/l.

Empty the Permadry™ water pan before moving the chamber. In case of the contents spilling, immediately shut down the chamber and dry it carefully and completely.
4.3 Connecting the O₂ sensor (chamber with O₂ control)

The O₂ sensor is supplied with the chamber in a separate package.

Connect or remove the O₂ sensor only when the chamber is turned off.

Open the door of the inner chamber and plug the O₂ sensor (F) into the left connection socket located in the upper part of the rear of the inner chamber. Pay attention to the correct positioning of the pins.

The O₂ sensor must be plugged in during a hot-air sterilization.

4.4 Gas connections

General information for safe handling of gas cylinders:
- Store and use gas cylinders only in well ventilated areas.
- Open the gas cylinder valve slowly to avoid pressure surges.
- Secure gas cylinders during storage and use against falling (chaining).
- Transport gas cylinders with a cylinder cart, do not carry, roll, or throw them.
- Always close the valve even with apparently empty cylinders; screw on the cap when not in use. Return gas cylinders with the valve closed.
- Do not open gas cylinders by force. Mark them when damaged.
- Protect gas cylinders against fire, e.g. do not store together with flammable liquids.
- Observe relevant regulations for dealing with gas cylinders.

Secure the gas cylinders against falling and other mechanical damage.

WARNING
Risk of injury through sudden release of the stored pressure energy when the valve safety is torn off.
Injuries.
- Secure gas cylinders against falling (chaining).
- Transport gas cylinders with a cylinder cart.

The valve of the gas cylinder always must be closed before screwing on or unscrewing the gas hose.

WARNING
Risk of injury through sudden release of the stored pressure energy when opening the cylinder valve of a not connected cylinder.
Injuries.
- Close the gas cylinder valve before connecting or removing the gas hose.
After connecting the gas cylinder, check all gas connections for leaks (e.g. with leak spray or diluted soap solution).

4.4.1 Connection of the CO₂ gas cylinder

Carbon dioxide (CO₂) in high concentrations is hazardous to health. It is colorless and almost odorless and therefore practically imperceptible. Vent out any CO₂ gas that may escape via good room ventilation or a suitable connection to an exhaust system. We recommend installing a CO₂ warning system.

![CO₂](image)

DANGER

Danger of suffocation and poisoning by high concentration of CO₂ (> 4 Vol.-%). Death by suffocation.

- Do NOT set up chambers in non-ventilated recesses.
- Ensure technical ventilation measures.
- Observe the relevant regulations for handling CO₂.
- Close the CO₂ supply when decommissioning the chamber.

The CO₂ gas necessary for operation must have a technical grade of 99.5 %.

The gas connections must be established by qualified personnel who are trained in handling the respective gases and familiar with the required safety measures.

The following steps are required:

Ensuring the correct CO₂ output pressure

A gas supply pressure above 2.5 bar / 36 psi will result in chamber damage.

Use a pressure reducer and make sure to avoid any excessive outlet pressure when connecting the gas hose to the chamber.

The real outlet pressure of gas cylinders, sets of gas cylinders or central gas supplies am on the second manometer must not exceed 2.5 bar / 36 psi.

![Notice](image)

NOTICE

Danger of damage by excessive outlet pressure > 2.5 bar / 36 psi. Damage to the chamber.

- The outlet pressure must NOT exceed the indicated value of 2.5 bar / 36 psi.
- Before connecting, check the outlet pressure on the pressure reducer of the cylinder.
- Adjust the outlet pressure to 2.0 bar / 29 psi above the ambient pressure.

Observe the correct outlet pressure also when replacing the gas cylinders.

Establishing the connection to the chamber

Connect the supplied gas hose (internal diameter 6 mm / 0.24 inches) to the pressure reducer of the gas cylinders or central gas supply and secure the connection with the supplied hose clamp.

Connect the pre-assembled hose nozzle of the gas hose to the quick acting closure socket (10) DN 6 on the chamber rear, as described in chap. 4.4.4.
Leak test

After connecting the gas cylinder, check all gas connections for leaks (e.g. with leak spray or diluted soap solution).

The recovery times of the gas concentrations inside the chamber after opening the door are indicated in the technical data (chap. 24.4) and refer to a connection pressure of 2.0 bar / 29 psi. Decreasing supply pressure will result in longer recovery times.

Conversion table for gas inlet pressures, bar – psi, see chap. 24.8.

4.4.2 Connection of the O₂ gas cylinder (chamber with O₂ control with optional alternative control range 10 up to 95 vol.-% O₂)

Note: Do not connect the O₂ cylinder or disconnect the gas supply (by pulling off the gas hose) when operating at setpoints below 19 vol.-% O₂.

Oxygen (O₂) is colorless and almost odorless and therefore practically imperceptible. It promotes burns, which can proceed explosively. There is a fire hazard for flammable oxygenated materials, e.g. clothes and hair. O₂ is heavier than air and may accumulate in low-lying areas.

DANGER

Danger of fire and explosion through contact of combustible materials with O₂ with high concentration of O₂ (> 21 % O₂).

Serious injury or death from burns and / or explosion pressure.

- Do NOT set up chambers in non-ventilated recesses.
- Ensure technical ventilation measures.
- Observe the relevant regulations for handling O₂.
- Close the O₂ supply when decommissioning the chamber.

The O₂ gas necessary for operation must have a technical grade of 99.5 %.

The gas connections must be established by qualified personnel who are trained in handling the respective gases and familiar with the required safety measures.

The following steps are required:

Ensuring the correct O₂ output pressure

A gas supply pressure above 2.5 bar / 36 psi will result in chamber damage.

Use a pressure reducer and make sure to avoid any excessive outlet pressure when connecting the gas hose to the chamber.

The real outlet pressure of gas cylinders, sets of gas cylinders or central gas supplies am on the second manometer must not exceed 2.5 bar / 36 psi.
NOTICE

Danger of damage by excessive outlet pressure > 2.5 bar / 36 psi.

Damage to the chamber.

- The outlet pressure must NOT exceed the indicated value of 2.5 bar / 36 psi.
- Before connecting, check the outlet pressure on the pressure reducer of the cylinder.
- Adjust the pressure to 2.0 bar / 29 psi above the ambient pressure.

Observe the correct outlet pressure also when replacing the gas cylinders.

Establishing the connection to the chamber

Connect the supplied gas hose (internal diameter 6 mm / 0.24 inches) to the pressure reducer of the gas cylinders or central gas supply and secure the connection with the supplied hose clamp.

Connect the pre-assembled hose nozzle of the gas hose to the quick acting closure socket (11) DN 6 on the chamber rear, as described in chap. 4.4.4.

Leak test

After connecting the gas cylinder, check all gas connections for leaks (e.g. with leak spray or diluted soap solution).

The recovery times of the gas concentrations inside the chamber after opening the door are indicated in the technical data (chap. 24.4) and refer to a connection pressure of 2.0 bar / 29 psi. Decreasing supply pressure will result in longer recovery times.

Conversion table for gas inlet pressures, bar – psi, see chap. 24.8.

4.4.3 Connection of the N₂ gas cylinder (chamber with O₂ control)

Nitrogen (N₂) in high concentrations is hazardous to health. It is colorless and almost odorless and therefore practically imperceptible. Any N₂ gas that may escape must be safely led out via good room ventilation or a suitable connection to an exhaust system.

DANGER

Risk of suffocation through high concentration of N₂.

Death by suffocation.

- Do NOT set up chambers in non-ventilated recesses.
- Ensure technical ventilation measures.
- Observe the relevant regulations for handling N₂.
- Close the N₂ supply when decommissioning the chamber.

The N₂ gas necessary for operation must have a technical grade of 99.5 %.

The gas connections must be established by qualified personnel who are trained in handling the respective gases and familiar with the required safety measures.
The following steps are required:

Ensuring the correct N₂ output pressure

<table>
<thead>
<tr>
<th></th>
<th>A gas supply pressure above 2.5 bar / 36 psi will result in chamber damage.</th>
</tr>
</thead>
</table>

Use a pressure reducer and make sure to avoid any excessive outlet pressure when connecting the gas hose to the chamber.

The real outlet pressure of gas cylinders, sets of gas cylinders or central gas supplies am on the second manometer must **not** exceed 2.5 bar / 36 psi.

NOTICE

Danger of damage by excessive outlet pressure > 2.5 bar / 36 psi.

Damage to the chamber.

- The outlet pressure must **NOT** exceed the indicated value of 2.5 bar / 36 psi.
- Before connecting, check the outlet pressure on the pressure reducer of the cylinder.
- Adjust the pressure to 2.0 bar / 29 psi above the ambient pressure.

Observe the correct outlet pressure also when replacing the gas cylinders.

Establishing the connection to the chamber

Connect the supplied gas hose (internal diameter 6 mm / 0.24 inches) to the pressure reducer of the gas cylinders or central gas supply and secure the connection with the supplied hose clamp.

Connect the pre-assembled hose nozzle of the gas hose to the quick acting closure socket (9) DN 6 on the chamber rear, as described in chap. 4.4.4.

Leak test

After connecting the gas cylinder, check all gas connections for leaks (e.g. with leak spray or diluted soap solution).

The recovery times of the gas concentrations inside the chamber after opening the door are indicated in the technical data (chap. 24.4) and refer to a connection pressure of 2.0 bar / 29 psi. Decreasing supply pressure will result in longer recovery times.

Conversion table for gas inlet pressures, bar – psi, see chap. 24.8.

4.4.4 Connecting the gas hose to the chamber rear (for CO₂, O₂, N₂)

The procedure of connecting the gas hose to the chamber rear is the same for any gas connection. All quick acting closure sockets (CO₂, N₂ with O₂ control, and O₂ with O₂ control and optional alternative control range 10 up to 95 vol.-% O₂) are degreased and supplied with a FKM gasket.

Note for chambers with O₂ control: The quick acting closure socket and the hose nozzle for the O₂ connection must be degreased.

<table>
<thead>
<tr>
<th></th>
<th>Fire and explosion hazard through contact of fat with O₂.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Serious injury or death from burns and / or explosion pressure.</td>
</tr>
<tr>
<td></td>
<td>All connection parts for the O₂ connection must be degreased.</td>
</tr>
</tbody>
</table>
The gas hose, which will be used to establish the connection to a gas cylinder, is already attached to the hose nozzle and secured by a hose clamp. Plug the hose nozzle into the corresponding quick acting closure socket (a) located at the rear of the chamber. This quick acting closure socket is closed by a rubber cover (b).

Only use the supplied hose nozzle to connect to the quick acting closure socket. Otherwise, the quick acting closure socket may leak, and/or it may become impossible to connect the original hose nozzle. In this case, please contact BINDER Service.

Remove the rubber cover (b) by pulling it off.

Now fit the hose nozzle (c) in the quick acting closure socket. To remove the connection, pull the hose nozzle off the quick acting closure socket.

Figure 14: Connecting the hose lead to the gas cylinder
4.4.5 Gas cylinder connection kits (option)

Gas cylinder connection kits are available for CO₂ (Art. No. 8012-0014), O₂ (Art. No. 8012-0015) and N₂ (Art. No. 8012-0016).

The connection kit includes the following parts for connecting a gas cylinder to the CO₂ incubator:

- Pressure reducer with manometers for cylinder pressure (high pressure gauge) and outlet pressure (low pressure gauge)
- 5 m pressure hose with pre-assembled hose nozzle for quick acting closure socket
- 1 hose clamp to connect the gas hose to the pressure reducer

Figure 15: Gas cylinder connection kit

Instructions 7001-0249 included with the connection kit describe connecting and setting the gas cylinder connection kit.

NOTICE

Danger of damage by excessive outlet pressure > 2.5 bar / 36 psi.
Damage to the chamber.

- The outlet pressure must NOT exceed the indicated value of 2.5 bar / 36 psi.
- Before connecting, check the outlet pressure on the pressure reducer of the cylinder.
- Adjust the outlet pressure to 2.0 bar / 29 psi above the ambient pressure.

The gas connections must be established by qualified personnel who are trained in handling the respective gases and familiar with the required safety measures.
4.5 Water supply and dehumidification for the chamber with active humidification

4.5.1 General remarks on water supply

4.5.1.1 Water supply

Freshwater is supplied by manually filling a freshwater bag (tubular bag set, standard, can be reordered) or a freshwater can (optional water container set). It is also possible to connect prefilled water bottles (optional humidification water set). It is not possible to connect the chamber directly to a water pipe.

The freshwater bag has a volume of 0.9 liters / 0.32 cu.ft. and is placed behind the chamber door in a recess.

To guarantee humidification during 24 hours even at high humidity set-points and / or frequent door openings, we recommend checking the freshwater bag daily at the end of the day.

When the freshwater can is empty, the message “Freshwater supply” will be displayed on the controller, the buzzer sounds, and the humidification module turns off. After acknowledging the alarm, the humidification module tries to fill up and start operating.

Water consumption at 37 °C / 98.6 °F and 93 % r.h.:
- Without opening the door: very low.
- When opening the door 10 times a day: approx. 70 ml per day.

4.5.1.2 Dehumidification

To reduce the humidity, ambient air is sucked in through a gas fine filter (sterile filter). As a result, the air in the interior is diluted with the air from outside. The air tube for inlet of the ambient air is located in the upper right corner in the recess for the freshwater bag. We recommend replacing the sterile filter on this tube about once a month. To replace the sterile filter, see chap. 22.2.3.

4.5.1.3 Types of suitable water quality

- Deionized water from a water treatment installation already existing at the customer’s site. Conductivity from 1 µS/cm up to a maximum of 20 µS/cm. (Water, which is in equilibrium with the CO₂ in the air, and has a conductivity below 1 µS/cm (ultrapure water), may cause acid corrosion due to its low pH).
- Tap water that has been treated by the optional water treatment system BINDER Pure Aqua Service (disposable system). A reusable measuring equipment to assess the water quality is included (chap. 4.5.1.4).

BINDER GmbH is NOT responsible for the water quality at the user's site. Any problems and malfunctions that might arise following use of water of deviating quality is excluded from liability by BINDER GmbH. The warranty becomes void in the event of use of water of deviating quality.

NOTICE

Danger of calcification of the humidifying system. Damage to the chamber.
- Operate the chamber with deionized (demineralized) water only.
Water intake temperature NOT below +5 °C / 41 °F and not exceeding 40 °C / 104 °F.

4.5.1.4 BINDER Pure Aqua Service (option)

The optional BINDER water treatment system (disposable system) is available to treat tap water. The lifetime depends on water quality and the amount of treated water used. The measuring equipment to assess the water quality is reusable.

For detailed information on operating the water treatment system BINDER Pure Aqua Service and its function, please refer to the operating manual supplied with BINDER Pure Aqua Service.

4.5.2 Water supply via freshwater bag (standard)

4.5.2.1 Scope of delivery

The optional tubular bag set includes all necessary connecting parts:

- Set art. no. 8009-1083 with 3 freshwater bags (included in scope of delivery)
- Set art. no. 8009-1058 with 12 freshwater bags (option, annual demand)

Each bag set includes:

- 3 resp. 12 (optional kit) freshwater bags (art.no. 6002-0626)
- 3 two-piece tube connectors with 3-5mm nozzles (art.no. 6009-0322)
- 3 two-piece tube connectors with 5-7mm nozzles (art.no. 6009-0323)
- 3 resp. 12 (optional kit) gas fine filters (sterile filter) (art.no. 6014-0012)
- 6 m silicone tube (DN 3mm) (art.no. 6008-0267)
- 1m filling tube (DN 10 mm) (art.no. 6008-0268)
- Instructions (art.no. 7001-0385)
4.5.2.2 Installation and connection of the freshwater bag

Figure 16: Installation of the water supply via freshwater bag

(12) Pump head
(12a) Pump head cover
(12b) Tube retainer
(12c) Rotor
(13) Pump connector

Please proceed in the following order:

- Fill the freshwater bag. Observe water quality and temperature (chap. 4.5.1.3).
- Attach a tube connector part with a 5-7 mm nozzle to the freshwater bag ①.
- Attach a tube connector part with a 3-5 mm nozzle to the silicone tube ②.
- Connect both tube connector parts.
- Turn the pump head (12) counterclockwise until it stops and remove it from the pump connector (13).
- Pull up the tongue of the tube retainer (12b) up to “Click” and remove it. Take the rotor (12c) out of the pump head cover (12a). ③.
- Lead the silicone tube along the rotor. Insert the rotor with the tube into the pump head cover. Keep the hose tight and do not pinch it. ④.

The end of the tube for connecting to the incubator should be about 6 cm long. With a total length of the silicone tube of 32 cm, the tube end for connecting the freshwater bag has a length of approx. 18 cm.
- Press the tube retainer (12b) into the pump head cover until it snaps into place.
• Insert the pump head (12) into the pump connector (13) and turn it clockwise until it snaps into place.
• Attach the silicone tube to the incubator connection ⑤.
• Place the freshwater bag with the opening to the left in the recess behind the chamber door.

4.5.2.3 Refilling the already installed freshwater bag

For easier handling, you can temporarily release the pump head from the pump connector on the incubator.

Standard procedure
• Remove the connection between both parts of the tube connector ①.
• Depending on the diameter of the object used for filling (hose, spray bottle ...), you may remove the connection between the hose connector part and the freshwater bag ①.
• Fill the freshwater bag. Observe water quality and temperature (chap. 4.5.1.3).
• If it has been removed, put the tube connector part with a 5-7 mm nozzle back on the freshwater bag ①.
• Reassemble the two parts of the tube connector ①.

Procedure with optional filling hose

A bag set (Art.no. 8009-1058) incl. accessories (annual demand) is optionally available (chap. 4.5.2). For easier filling, the set contains a filling tube (DN 10 mm) of 1 m length with a fitting tube connector.
• Remove the connection between both parts of the tube connector ①.
• Attach the filling tube to the tube connector part which is still on the freshwater bag.
• Fill the freshwater bag. Observe water quality and temperature (chap. 4.5.1.3).
• Remove the filling tube from the tube connector on the freshwater bag.
• Reassemble the two parts of the tube connector ①.
4.5.2.4 Replacing the tube connectors for freshwater supply

3 two-piece tube connectors with 3-5mm nozzles and 3 two-piece tube connectors with 5-7mm nozzles are included with the optional bag set.

State of delivery:

Two-piece tube connector with 3-5mm nozzles

Two-piece tube connector with 5-7mm nozzles

For connection to the silicone tube and the freshwater bag, the hose connectors must be combined accordingly:

<table>
<thead>
<tr>
<th>Combination 1:</th>
<th>To silicone tube: 3-5 mm nozzle</th>
<th>To freshwater bag: 5-7 mm nozzle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opening NW 7 mm</td>
<td>Opening NW 4 mm</td>
<td></td>
</tr>
</tbody>
</table>

| Combination 2: (recommended) | Opening NW 4 mm | Opening NW 7 mm |

Connecting the freshwater bag

Put the filled freshwater bag on the nozzle of the hose connector.
4.5.3 Water supply via prefilled water bottle (optional humidification water set)

By using the humidification water set you will achieve unsurpassed contamination safety of your samples in the BINDER CB CO₂ incubator with active humidification.

4.5.3.1 Scope of delivery

The optional humidification water set includes all necessary connecting parts:
- Art.no. 8009-1104 Set with 10 prefilled one-liter bottles (annual demand)

The humidification water set includes:
- 10 one-liter bottles, prefilled with sterile, deionized water (art.no. 1007-0314)
- 3 spike connectors (transfer sets) for sterile liquids (art.no. 6007-0131)
- 3 two-piece tube connectors with 3-5mm nozzles (art.no. 6009-0322)
- 2 m silicone tube (DN 3mm) (art.no. 6008-0267)
- 3 gas fine filters (sterile filter) (art.no. 6014-0012)
- 20 cm silicone tube (DN 6 mm) (art.no. 6008-0009)
- Instructions (art.no. 7001-0385)

4.5.3.2 Installation, connection and change of the prefilled water bottle

The optional humidification water set includes all necessary connecting parts.

![Diagram of water supply via prefilled water bottle]

Figure 18: Installation of the water supply via prefilled water bottle

- (12) Pump head
- (12a) Pump head cover
- (12b) Tube retainer
- (12c) Rotor
- (13) Pump connector
Please proceed in the following order:

- Turn the pump head (12) counterclockwise until it stops and remove it from the pump connector (13).
- Pull up the tongue of the tube retainer (12b) up to “Click” and remove it. Take the rotor (12c) out of the pump head cover (12a). ①
- Lead the silicone tube along the rotor. Insert the rotor with the tube into the pump head cover. Keep the hose tight and do not pinch it.②

The end of the tube for connecting to the incubator should be about 6 cm long. With a total length of the silicone tube of 32 cm, the tube end for connecting the water bottle has a length of approx. 18 cm.
- Press the tube retainer (12b) into the pump head cover until it snaps into place.

![Figure 19: Inserting the silicone tube into the pump head](image)

- Insert the pump head (12) into the pump connector (13) and turn it clockwise until it snaps into place.
- Attach the silicone tube to the incubator connection. ③
- Plug the part of the tube connector with 3-5mm nozzle in the silicon tube. ④
- Connect the free nozzle of the tube connector with a part of the silicon tube DN 6 mm ⑤
- Remove the protective cap of the spike connector (transfer set) and connect the nozzle of the tube connector with the spike connectors using a part of the DN 6 mm silicone tube. ⑥

![Silicone tube of the water system, Two-piece tube connector, Silicone tube DN 6 mm, Spike connector (transfer set)](image)

- Then remove the second protective cap of the spike connector and insert the piercing pin into the water bottle through the silicone seal. ⑦
4.5.4 Water supply via freshwater can (optional water container set)

The fresh water can, which is placed in an included magnetic can holder on the left chamber side, serves to supply one or several chambers with freshwater for humidification.

Since the pump is self-priming, it is not required that the water outlet of the can should be placed higher than the pump, so you can position the water can freely in height.

The freshwater can outlet must NOT be placed on or above the rear panel of the chamber or on the right chamber side.

DANGER

Electrical hazard by water entering the chamber via the rear panel.
Deadly electric shock.

- The magnetic support adjustable in height (option) may only be attached on the left side of the chamber.
- Do NOT place the freshwater can tap on or above the rear panel of the chamber

Figure 20: Two CB incubators with installed water supply via freshwater can (option)
4.5.4.1 Scope of delivery

The optional water container set includes all necessary connecting parts:

- Art. no. 8009-1128 Set with freshwater can, magnetic support and connecting parts

The water container set includes:

- Magnetic can holder adjustable in height, consisting of magnetic holder (art.no. 8022-0009) and water can support (art.no. 4021-0724)
- Water can, 10 l (art.no. 6011-0192)
- Hose coupling with aqua stop (art.no. 6002-0637)
- Angular coupling plug with aqua stop (art.no. 6002-0638)
- 12 gas fine filters (sterile filter) (art.no. 6014-0012)
- 10 m silicone tube (DN 3mm) (art.no. 6008-0267) to the pump or via T-type tube connectors to further chambers
- 50 cm silicone tube, d10 x 2 (art.no. 6008-0268)
- Reducing connector (tube connector 4/9 mm) (art.no. 6009-0308)
- 4 wire tension clamps (art.no. 6009-0281) (2 spare parts)
- 3 T-type tube connectors (T-Pieces), 4mm (art.no. 6009-0318)
- Instructions (art.no. 7001-0385)

4.5.4.2 Installation and connection of the freshwater can (optional water container set)

The optional water container set includes all necessary connecting parts.

First, the silicone hose DN 3mm (24) must be connected to the chamber and led through the pump

![Diagram of the pump head and its components](image)

Please proceed in the following order:

- Turn the pump head (12) counterclockwise until it stops and remove it from the pump connector (13).
- Pull up the tongue of the tube retainer (12b) up to “Click” and remove it. Take the rotor (12c) out of the pump head cover (12a).
- Lead the silicone tube along the rotor. Insert the rotor with the tube into the pump head cover. Keep the hose tight and do not pinch it.
The end of the tube for connecting to the incubator should be about 6 cm long.

- Press the tube retainer (12b) into the pump head cover until it snaps into place.

![Figure 22: Inserting the silicone tube into the pump head](image)

- Insert the pump head (12) into the pump connector (13) and turn it clockwise until it snaps into place.
- Attach the silicone tube to the incubator connection. ③

Now you can attach the freshwater can at the chamber and establish the hose connection to the freshwater can.

![Figure 23: Installation of the water supply via freshwater can, example with single chamber](image)

(17) Freshwater can
(18) Magnetic can holder (water can support)
(19) Hose coupling with aqua stop
(19a) Removal button
(20) Angular coupling plug with aqua stop
(21) Silicone tube d 10
(22) Reducing connector
(23) Wire tension clamp
(24) Silicone tube DN 3mm to the pump (or via T-type tube connector (T-piece) to another chamber)
(12) Pump
Please proceed in the following order:

- Assemble the magnetic can holder (18): Attach the water can support to the holder
- Attach the magnetic can holder (18) to the left chamber side
- Insert the freshwater can (17) from above into the water can support
- Screw the hose coupling with aqua stop (19) on the water can outlet
- Insert the angular coupling plug (20) into the hose coupling. The gray removal button (19a) on the hose coupling snaps into place.
- Attach a 5 cm piece of the silicone tube d10 (21) to the angular coupling plug.
- Insert the reducing connector (22) into the silicone tube (21)
- Secure both sides of the silicone tube (21) each with a wire tension clamp (23)

Water supply for a single chamber:

- Plug the silicone tube DN 3mm (24) coming from the pump (12) on the reducing connector (22)

Water supply for several chambers:

You can branch off the water supply via T-pieces for additional chambers.

- Divide the silicone tube DN 3mm (24) into pieces of a suitable length. Take into account the height of the magnetic can holder
- Put a piece of the silicone tube DN 3mm (24) on the reducing connector (22) and connect a T-piece to the free end
- If there are more than two chambers, you can connect another T-piece using a piece of the silicone tube DN 3mm (24)
- For each chamber, plug the silicone tube DN 3mm (24) coming from the pump (12) onto the free outlet of the T-piece

Now you can fill the freshwater can. Observe water quality and temperature. Do not firmly close the lid of the freshwater can to allow air to enter the freshwater can. As a result, obstruction of the water supply due to negative pressure inside the can is avoided.

4.5.4.3 Refilling the freshwater can

For refilling later, you can remove the freshwater can from the water can support. Press the grey removal button on the hose coupling, then the angle coupling plug can be removed. A small amount of water can escape (filling amount of the angular coupling plug). The water can outlet remains closed due to the aqua stop.

Alternatively, you can remove the lid and fill the can on site with a suitable aid (water hose, watering can). When filling on site, the existing hose connection can remain on the freshwater can.
4.6 Electrical connection

The chambers are supplied ready for connection. They come with an IEC connector plug.

<table>
<thead>
<tr>
<th>Model</th>
<th>Art. No. (x = 0 or 1)</th>
<th>Power plug</th>
<th>Voltage +/-10 %</th>
<th>Power frequency</th>
<th>Chamber fuse</th>
</tr>
</thead>
<tbody>
<tr>
<td>CB 170</td>
<td>9x40- 0131
9x40- 0132
9x40- 0133
9x40- 0134</td>
<td>Grounded plug IEC 7/7</td>
<td>200-230 V (1N~)</td>
<td>50/60 Hz</td>
<td>10 A</td>
</tr>
<tr>
<td>CB 170-UL</td>
<td>9x40- 0139
9x40- 0140
9x40- 0141
9x40- 0142</td>
<td>NEMA 5-20P</td>
<td>100-120 V (1N~)</td>
<td>50/60 Hz</td>
<td>16 A</td>
</tr>
<tr>
<td>CB 260</td>
<td>9x40-0147
9x40-0148
9x40-0149
9x40-0150</td>
<td>Grounded plug IEC 7/7</td>
<td>200-230 V (1N~)</td>
<td>50/60 Hz</td>
<td>10 A</td>
</tr>
<tr>
<td>CB 260-UL</td>
<td>9x40-0152
9x40-0153
9x40-0154
9x40-0155</td>
<td>NEMA 5-20P</td>
<td>100-120 V (1N~)</td>
<td>50/60 Hz</td>
<td>16 A</td>
</tr>
</tbody>
</table>

- The domestic socket must also provide a protective conductor. Make sure that the connection of the protective conductor of the domestic installations to the chamber’s protective conductor meets the latest technology. The protective conductors of the socket and plug must be compatible!

DANGER

Electrical hazard due to missing protective conductor connection.
Deadly electric shock.

- Make sure that the chamber’s power plug and the power socket match and securely connect the electrical protective conductors of the chamber and the house installation.

NOTICE

Danger of incorrect power supply voltage due to improper connection.
Damage to the chamber.

- Check the power supply voltage before connection and start-up.
- Compare the power supply voltage with the data indicated on the type plate.

- Use only the original connection cables according to the above specification.
- Prior to connection and start-up, check the power supply voltage. Compare the values to the specified data located on the chamber’s type plate (left chamber side, bottom right-hand, see chap. 1.6).

- When connecting the chamber, please observe the regulations specified by the local electricity supply company as well as the local and national regulations (VDE directives for Germany).
- Make sure that there is sufficient current protection in accordance with the number of devices that are to be operated. We recommend the use of a residual current circuit breaker.
- Pollution degree (acc. to IEC 61010-1): 2
- Over-voltage category (acc. to IEC 61010-1): II
See also electrical data (chap. 24.4).

To completely separate the chamber from the power supply, you must disconnect the power plug. Install the chamber in a way that the power plug is easily accessible and can be easily pulled in case of danger.

4.7 Handling and aligning the divided inner door, gas proof (optional equipment)

- Rubber profile gasket of individual glass door of the divided inner door
- Hinge of the set-in divided inner door, with elongated holes to align the inner door
- Measuring access port

![Figure 24: Divided inner door, gas proof (example: CB 170)](image)

- Pull the handles to open each of the individual glass doors. Do not press too hard while closing them to avoid pushing the doors through the gasket into the inner chamber.
- The rubber profile gaskets of the individual glass doors are easy to replace.
- If the divided inner door is not in an aligned position, fasten the hinge screws in the elongated holes of the hinge to align it. Align the door and operate the locking smoothly.
5. Functional overview of the MB2 chamber controller

The MB2 chamber controller controls following parameters inside the chamber:

- Temperature in °C
- Carbon dioxide concentration in vol.-%
- Oxygen concentration in vol.-% (chamber with O₂ control)
- Humidity in % r.h. (chamber with active humidification)

Note: In this manual the chambers are described in the maximum equipment variant and including the available options. Therefore, some of the pictured and described features are not available on every chambers.

You can enter the desired set point values in fixed value operation mode directly on the display surface or via the setpoint menu. For program operation the controller offers programming week and time programs. In addition there is a timer program available (stopwatch function).

The controller offers various notifications and alarm messages with visual and audible indication and remote alarms via e-mail, an event list (trace file) and the graphical display of the measuring values in the der chart recorder view. The MB2 program controller permits programming temperature and CO₂ / O₂ and humidity cycles, and specifying special controller functions for each program section. You can enter values or programs directly at the controller or use the APT-COM™ 4 Multi Management Software (option) specially developed by BINDER.

<table>
<thead>
<tr>
<th>Operating mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating mode</td>
</tr>
<tr>
<td>Fixed value</td>
</tr>
<tr>
<td>Setpoint</td>
</tr>
<tr>
<td>Temperature</td>
</tr>
<tr>
<td>CO₂</td>
</tr>
<tr>
<td>O₂</td>
</tr>
<tr>
<td>Humidity</td>
</tr>
<tr>
<td>Temperature values</td>
</tr>
<tr>
<td>CO₂ values</td>
</tr>
<tr>
<td>O₂ values (O₂ control)</td>
</tr>
<tr>
<td>Humidity values (active humidification)</td>
</tr>
<tr>
<td>Actual values</td>
</tr>
<tr>
<td>Set-point values</td>
</tr>
<tr>
<td>Functional icons</td>
</tr>
</tbody>
</table>

Figure 25: Normal display of the MB2 program controller (sample values, chamber with O₂ control and active humidification)
5.1 Operating functions in normal display

![Diagram of MB2 controller in normal display]

- **Current operating mode**
- **Text list for information icons**
- **Date, time, authorization level of the logged-in user, memory**
- **Quick setpoint entry**
- **Setpoint entry**
- **Event list**
- **Display of active alarms**
- **Access to main menu**
- **Continue to next screen**
- **Back to Normal display**
- **Information**

Figure 26: Operating functions of the MB2 controller in normal display (sample values, chamber with O₂ control)

<table>
<thead>
<tr>
<th>Fixed value</th>
<th>Setpoint</th>
<th>Actual value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>37.0</td>
<td>37.0</td>
</tr>
<tr>
<td>CO₂</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>O₂</td>
<td>21.0</td>
<td>21.0</td>
</tr>
<tr>
<td>Humidity</td>
<td>93.0</td>
<td>93.0</td>
</tr>
</tbody>
</table>
5.2 Display views: Normal display, program display, chart-recorder display

Press the **Change view** icon to toggle between normal display, program display and chart-recorder display.

Press the **Normal display** icon to return from program display and chart recorder display back to Normal display.

Normal display (actual values / setpoint values)

<table>
<thead>
<tr>
<th>Fixed value</th>
<th>Setpoint</th>
<th>Actual value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>37.0</td>
<td>37.0</td>
</tr>
<tr>
<td>CO2</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>O2</td>
<td>21.0</td>
<td>21.0</td>
</tr>
<tr>
<td>Humidity</td>
<td>%RH</td>
<td>93.0</td>
</tr>
</tbody>
</table>

Program display (example: time program)

<table>
<thead>
<tr>
<th>Time program</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section number</td>
</tr>
<tr>
<td>Section duration</td>
</tr>
<tr>
<td>Remaining section time</td>
</tr>
<tr>
<td>Rem. program runtime</td>
</tr>
<tr>
<td>Temperature</td>
</tr>
<tr>
<td>CO2</td>
</tr>
<tr>
<td>O2</td>
</tr>
</tbody>
</table>

Chart recorder display

(Sample values, chamber with O₂ control and active humidification)
5.3 Controller icons overview

Navigation icons in Normal display

<table>
<thead>
<tr>
<th>Icon</th>
<th>Signification</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Main menu</td>
<td>Access from Normal display to the main menu</td>
</tr>
<tr>
<td></td>
<td>Alarm</td>
<td>Access from Normal display to the list of active alarms</td>
</tr>
<tr>
<td></td>
<td>Event list</td>
<td>Access from Normal display to the event list</td>
</tr>
<tr>
<td></td>
<td>Setpoint setting</td>
<td>Access from Normal display to the setpoint entry menu: setpoint entry for Fixed value operation, turning on/off CO₂ / O₂ and humidity control, safety controller settings</td>
</tr>
<tr>
<td></td>
<td>Program start</td>
<td>Start a previously entered time or week program, continue a paused time program</td>
</tr>
<tr>
<td></td>
<td>Program pause</td>
<td>Pause a running time program</td>
</tr>
<tr>
<td></td>
<td>Program cancelling</td>
<td>Cancel a running time or week program</td>
</tr>
<tr>
<td></td>
<td>Information</td>
<td>Information on program operation, setpoints, actual values, and the safety controller</td>
</tr>
<tr>
<td></td>
<td>Normal display</td>
<td>Return from program display or chart recorder display to Normal display</td>
</tr>
<tr>
<td></td>
<td>Change view</td>
<td>Toggle between Normal display, program display, and chart recorder display</td>
</tr>
</tbody>
</table>

Functional icons in individual menus

<table>
<thead>
<tr>
<th>Icon</th>
<th>Signification</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Back</td>
<td>Return from each menu to Normal display</td>
</tr>
<tr>
<td></td>
<td>Update</td>
<td>Update the event list and alarm messages</td>
</tr>
<tr>
<td></td>
<td>Confirm</td>
<td>Take over the entries and exit the menu / continue menu sequence.</td>
</tr>
<tr>
<td></td>
<td>Close</td>
<td>Exit the menu / cancel menu sequence, Entries are not taken over. When terminating a menu sequence, an information window appears, which must be confirmed.</td>
</tr>
<tr>
<td></td>
<td>Reset alarm</td>
<td>Acknowledge the alarm and mute the buzzer.</td>
</tr>
<tr>
<td></td>
<td>Change keyboard</td>
<td>Change between uppercase and lower case characters, digits and special characters</td>
</tr>
<tr>
<td></td>
<td>Edit</td>
<td>Edit settings of time and week programs</td>
</tr>
</tbody>
</table>
Functional icons in the chart recorder display

<table>
<thead>
<tr>
<th>Icon</th>
<th>Signification</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Show legend</td>
<td>Show legend</td>
</tr>
<tr>
<td></td>
<td>Hide legend</td>
<td>Hide legend</td>
</tr>
<tr>
<td></td>
<td>Switch between legend pages</td>
<td>Switch between legend pages</td>
</tr>
<tr>
<td></td>
<td>Show indication “Door open” (B2)</td>
<td>Show indication “Door open” (B2)</td>
</tr>
<tr>
<td></td>
<td>Hide indication “Door open” (B2)</td>
<td>Hide indication “Door open” (B2)</td>
</tr>
<tr>
<td></td>
<td>Pause chart recorder and change to history display. Data recording continues.</td>
<td>Pause chart recorder and change to history display. Data recording continues.</td>
</tr>
<tr>
<td></td>
<td>Go to “Curve selection” submenu in the history display</td>
<td>Go to “Curve selection” submenu in the history display</td>
</tr>
<tr>
<td></td>
<td>Go to “Search” submenu in the history display to select the required instant</td>
<td>Go to “Search” submenu in the history display to select the required instant</td>
</tr>
<tr>
<td></td>
<td>Go to “Zoom” submenu in the history display to select the zoom factor</td>
<td>Go to “Zoom” submenu in the history display to select the zoom factor</td>
</tr>
<tr>
<td></td>
<td>Show scroll buttons in the history display to scroll to an instant</td>
<td>Show scroll buttons in the history display to scroll to an instant</td>
</tr>
<tr>
<td></td>
<td>Hide scroll buttons in the history display to scroll to an instant</td>
<td>Hide scroll buttons in the history display to scroll to an instant</td>
</tr>
</tbody>
</table>

Information icons referring to chamber conditions

<table>
<thead>
<tr>
<th>Icon</th>
<th>Text information</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>“Idle mode”</td>
<td>Controller is in Idle mode</td>
</tr>
<tr>
<td></td>
<td>“Door open”</td>
<td>Chamber door is open</td>
</tr>
<tr>
<td></td>
<td>“CO2 pressure alarm off”</td>
<td>CO₂ pressure alarm deactivated</td>
</tr>
<tr>
<td></td>
<td>“O2 pressure alarm off”</td>
<td>O₂ pressure alarm deactivated (chamber with O₂ control)</td>
</tr>
<tr>
<td></td>
<td>“N2 pressure alarm off”</td>
<td>N₂ pressure alarm deactivated (chamber with O₂ control)</td>
</tr>
<tr>
<td></td>
<td>“Interior socket”</td>
<td>Interior socket (option) activated</td>
</tr>
</tbody>
</table>

Information icon for data processing

<table>
<thead>
<tr>
<th>Icon</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Waiting icon: Data processing is running. Remaining time to touch the display when calibrating the touchscreen.</td>
</tr>
</tbody>
</table>
5.4 Operating modes

The MB2 program controller operates in the following operating modes:

- **Idle mode**
 The controller is not functional, i.e., there is no heating, no CO₂ inlet or O₂ inlet (O₂ control) and no humidification (active humidification). The chamber approximates ambient values.
 You can activate and deactivate this operating mode with the “Idle mode” control contact in Fixed value operating mode (chap. 7.3), time program operation (chap. 9.7.3) and week program operation (chap. 10.6.5).

- **Fixed value operating mode**
 The controller operates as a fixed-point controller, i.e., set-points for temperature, CO₂, O₂ (O₂ control) and humidity (active humidification) can be defined, which are then maintained until the next manual change (chap. 7.1).

- **Timer program operation**
 Stopwatch function: during an entered duration the controller constantly equilibrates to the setpoints entered in Fixed value operation mode.

- **Time program operation**
 An entered time program for temperature, CO₂, O₂ (O₂ control) and humidity (active humidification) is running. The controller offers 25 program memory places with 100 program sections each. The total number of program sections of all programs is unlimited

- **Week program operation**
 An entered week program for temperature, CO₂, O₂ (O₂ control) and humidity (active humidification) is running. The controller offers 5 program memory places with 100 switching points each. The switching points can be distributed over all days of the week.
5.5 Controller menu structure

Use the navigation icons in the screen footer in Normal display to access the desired controller functions.

The available functions depend on the current authorization level “Service”, “Admin” or “User” (chap. 13.1). This is selected either during login or can be available without password protection.

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
<th>Chapter(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>📚</td>
<td>Main menu: program settings, further information, “Service” submenu. The “Settings” submenu allows general configuration of the controller.</td>
<td>chap. 5.5.1</td>
</tr>
<tr>
<td>🕵️‍♂️</td>
<td>List of active alarms</td>
<td>chap. 11</td>
</tr>
<tr>
<td>📋</td>
<td>Access to the event list</td>
<td>chap. 15.3</td>
</tr>
<tr>
<td>🍼</td>
<td>Setpoint entry for Fixed value operation, turning on/off CO₂ control, O₂ control (chamber with O₂ control) and humidity control (active humidification), safety controller settings</td>
<td>chap. 7, 6.7, 12.2</td>
</tr>
<tr>
<td>🎥</td>
<td>Start/ pause/ cancel an already entered, respectively a running time program or start / cancel an already entered, respectively a running week program</td>
<td>chap. 9.1, 9.2, 10.1</td>
</tr>
</tbody>
</table>

Unless noted otherwise, the figures show the functional range, which is available for the user with “Admin” authorization level.
5.5.1 Main menu

The main menu provides access to the general configuration of the controller as well as to program entry and the user administration. Additionally there are support functions like a contact page or the display calibration depending on the available angle.

Press the **Main menu** icon to access the main menu from Normal Display.

Press the **Back** icon to return from each setting menu to Normal Display.

The main menu provides the following functions and submenus.

<table>
<thead>
<tr>
<th>Main menu</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>User</td>
<td>User management: login and logout, password management (chap. 13)</td>
</tr>
<tr>
<td>Device info</td>
<td>Chamber information (chap. 15.2)</td>
</tr>
<tr>
<td>Setting</td>
<td>“Settings” submenu (not visible for user with “User” authorization level) (chap. 14)</td>
</tr>
<tr>
<td>Programs</td>
<td>Program entry submenu for time and week programs (chap. 9 and 10)</td>
</tr>
<tr>
<td>Service</td>
<td>“Service” submenu (chap. 5.5.3)</td>
</tr>
<tr>
<td>Contact</td>
<td>BINDER Service contact page (chap. 15.1)</td>
</tr>
<tr>
<td>Calibrate touchscreen</td>
<td>Calibrating the touch screen (chap. 14.4.2)</td>
</tr>
</tbody>
</table>

“Settings” submenu

- Settings of many general controller functions and network settings (chap. 14).
- Available only for users with “Service” and “Admin” authorization level.

“Service” submenu

- Access to service data, controller reset to factory settings (chap. 5.5.3)
- Available only for users with “Service” and “Admin” authorization level. Full functional range only for BINDER Service (users with “Service” authorization level).

“Programs” submenu

- Access to the controller's program functions (chap. 8, 9, 10)
5.5.2 “Settings” submenu

The “Settings” submenu is available for users with “Service” or “Admin” authorization level. It serves to enter date and time, select the language for the controller menus and the desired temperature unit and to configure the controller’s communication functions.

Path: Main menu > Settings

<table>
<thead>
<tr>
<th>Main</th>
</tr>
</thead>
<tbody>
<tr>
<td>Settings</td>
</tr>
<tr>
<td>📗 Chamber</td>
</tr>
<tr>
<td>🕒 Date and time</td>
</tr>
<tr>
<td>🌐 Display</td>
</tr>
<tr>
<td>📊 Measurement chart</td>
</tr>
<tr>
<td>📊 Various</td>
</tr>
<tr>
<td>🌐 Serial interfaces</td>
</tr>
<tr>
<td>🌐 Ethernet</td>
</tr>
<tr>
<td>🌐 Web server</td>
</tr>
<tr>
<td>📧 email</td>
</tr>
</tbody>
</table>

Setting the temperature unit, menu language…	chap. 14.1, 14.2
Setting date and time	chap. 14.2
Setting the display brightness, continuous operation and screen saver	chap. 14.4
Settings for the measurement chart: storage interval, storage values, minimum and maximum values	chap. 16.2
Setting the tolerance range and delay time for tolerance range alarm	chap. 11.4
Configuration of the RS485 interface (available via BINDER INDIVIDUAL Customized Solutions)	chap. 14.5.1
Entry of the MAC address and IP address	chap. 14.5.2
Password protection for web server access	chap. 14.5.3
Configuration of the e-mail server, assignment of e-mail addresses	chap. 14.5.4

Back to main menu

5.5.3 “Service” submenu

The “Service” submenu is available for users with “Service” or “Admin” authorization level. When logged-in with “Admin” authorization level the user will find information to tell the BINDER Service in service case.

Path: Main menu > Service

<table>
<thead>
<tr>
<th>Main</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service</td>
</tr>
<tr>
<td>📗 Service data</td>
</tr>
<tr>
<td>✂ Counter</td>
</tr>
<tr>
<td>🔴 ST code</td>
</tr>
<tr>
<td>🚚 Factory settings</td>
</tr>
</tbody>
</table>

Serial number of the chamber, setup version of the controller software	chap. 14.2
No function	
Information for BINDER Service	
Reset to factory settings	

(Back to main menu)

(view with “Admin” authorization level)
5.6 Principle of controller entries

In the selection and entry menus there are icons displayed in the footers which you can use to take over the entry or cancel it.

After completing the settings there are the following possibilities:

| Press the **Confirm** icon to take over the entries and exit the menu or continue the menu sequence. |
| Press the **Close** icon to exit the menu or cancel the menu sequence without taking over the entries. When terminating a menu sequence, an information window appears, which must be confirmed. |

5.7 Performance during and after power failures

During a power failure, all controller functions are shut down. The gas inlet valves are closed so that no gas can escape into the ambient air. The zero-voltage relay alarm output (3) (chap. 11.6) is switched to alarm position for the whole duration of the power failure.

After the power returns, all functions return to the same status the chamber had before power failure. The controller continues to function in the original operating mode it was in previously before the power failure occurred.

- **Performance after power failure in Idle mode**
 Control is deactivated

- **Performance after power failure in Fixed value operation mode**
 All functions return to the same status the chamber had before power failure. The set-points are immediately resumed.

- **Performance after power failure during time program operation**
 The program is resumed at the point where the interruption occurred with the latest set-points reached during the program run.

- **Performance after power failure during week program operation**
 The week program continues with the values corresponding to the current time.

- **Performance after power failure during sterilization operation**
 The sterilization process is cancelled and the controller changes to Fixed value operation mode with the setpoints already entered. All setpoint values remain in memory.
Power failure and power return are noted in the event list (chap. 15.3).
If during power failure the inner chamber temperature or the CO₂ / O₂ concentration has fallen below the alarm thresholds, confirm the alarms (e.g., tolerance range, safety controller). See chap. 11.3.

5.8 Performance when opening the door

When you open the door, CO₂ control and O₂ control (chamber with O₂ control) immediately turns off.
After 60 seconds from opening the door, the heating and humidification (chamber with active humidification) turn off.
After closing the door, heating, CO₂ control, O₂ control (chamber with O₂ control), humidification (chamber with active humidification) turn on again.

6. Start up

6.1 Turning on the chamber

After connecting the supply lines (chap. 4), turn on the chamber by its main power switch. The lit pilot lamp shows the chamber is ready for operation.
When the main power switch is turned on and yet the controller display is dark, the display is in stand-by mode. Press on the touchscreen to activate it.
Check that the CO₂ control is activated (chap. 6.7).

Chamber with active humidification:

- Fill the freshwater bag (chap. 4.5). Check that the humidifying system is activated (chap. 6.7).
- After the first turning on of the chamber or after an interruption of the power supply the relative humidity will increase after a delay of about 20 minutes. During this period, the relative humidity can drop considerably.

Chamber with O₂ control:

- Check that the O₂ control is activated (chap. 6.7).

Warming chambers may release odors in the first few days after commissioning. This is not a quality defect. To reduce odors quickly we recommend heating up the chamber to its nominal temperature for one day and in a well-ventilated location.

WARNING: If customer should use a BINDER chamber running in non-supervised continuous operation, we strongly recommend in case of inclusion of irrecoverable specimen or samples to split such specimen or samples and store them in at least two chambers, if this is feasible.
6.2 Controller settings upon start up

The window „Language selection“ enables the language selection, in case that it’s activated in the “Start-up” menu. Afterwards occurs a request of the time zone and the temperature unit.

The controller will function in the operating mode, which was active before the last shut-down. It controls temperature, CO₂, O₂ (chamber with O₂ control) and humidity (chamber with active humidification) in fixed value operating mode to the last entered values and in the program mode to the set points achieved beforehand.

Locked operation

Provided that the user administration has been activated by the assignment of passwords for the different authorization types, the controller operation is first locked after turning on the unit, recognizable by the closed lock icon in the header.

In the locked view the controller provides all display functions. No setting functions are available. The setpoints are shaded (light grey) in normal display. Changing them by direct entry in the fixed value operating mode is not possible. The functional icons for setpoint entry and program start in the footer are without function.

After turning on the unit, user log-in is required to operate the controller (chap. 13.2)

Operation without user log-in / without password-protection

If the password function has been deactivated, after turning on the unit without user log-in there are those controller functions available, which correspond to the highest authorization level without a password protection. There is no lock icon in the header.
6.3 Factory settings

The chamber is supplied with the following basic preset parameters:

- Temperature setpoint: $37 \, ^\circ C / 98.6 \, ^\circ F$
- CO$_2$ setpoint: 5 vol.-%
- O$_2$ setpoint (chamber with O$_2$ control): 21 vol.-%
- Humidity setpoint (chamber with active humidification): 93 % r.h.
- Safety controller class 3.1 Offset: 2 °C
- Sterilization temperature: $187.5 \, ^\circ C / 369.5 \, ^\circ F$
- Audible alarm signal (buzzer): activated

The set temperature determines the target working temperature in the inner chamber, i.e. set value $37 \, ^\circ C / 98.6 \, ^\circ F = $ target working temperature $37 \, ^\circ C / 98.6 \, ^\circ F$. The same is valid for the CO$_2$ and O$_2$ concentration (chamber with O$_2$ control) and humidity (chamber with active humidification). For the hot-air sterilization, the set value is $187.5 \, ^\circ C / 369.5 \, ^\circ F$ and cannot be changed.

As long as there is a difference between the actual and set value shown in the display, adequate operation of the chamber is not guaranteed.

6.4 Equilibration time

Temperature
- Equilibration time is max. 4 hours.

CO$_2$
- After turning in the chamber, after approx. 5 minutes the CO$_2$ concentration equilibrates automatically to the pre-set value of 5 vol.-% CO$_2$.
- Equilibration time is max. 0.5 hours.

O$_2$ (chamber with O$_2$ control)
- After turning in the chamber, the ambient oxygen concentration of approx. 20.9 vol.-% is displayed after a delay of 10 minutes. During the first 10 minutes, O$_2$ control is not defined. Then O$_2$ is regulated to the displayed setpoint value of 21 vol.-%.
- For high O$_2$ setpoint values (with alternative control range option), equilibration time is max. 1.5 hours.

Humidity (without active humidification)
- With humidity control effected via the Permadry® system equilibration time is max. 15 hours

Humidity (chamber with active humidification)
- Equilibration time is max. 1 hour.
6.5 Operating the DuoDoor™ door lock

WARNING
Magnets can affect the function of pacemakers and implanted defibrillators. A pacemaker can be put into test mode and cause discomfort. A defibrillator may not work anymore.

- If you wear such devices, maintain a sufficient safety distance to the chamber door in the area of the door handle.
- Warn wearers of such devices of approaching the chamber door.

The DuoDoor™ door lock offers two different ways to open the doors, dependent on the glass door lock position.

Opening outer door and glass door independently
When closing the glass door, close the glass door lock. Then you can close and open the outer door using its handle. The glass door will remain closed until you manually open the glass door lock.

Opening outer door and glass together
When closing the glass door leave the glass door lock in open position. Then close the outer door. The glass door is pressed against the gasket so that both doors are securely closed. When opening the outer door, a magnetic device also opens the glass door.

6.6 Required gas supply for the chamber with O₂ control

In the chamber with O₂ control, cell growth can be additionally influenced by a variable oxygen content. Depending on the required range of O₂ concentration, the type of gas which is required may vary. To this end, two equipment variants are available:

6.6.1 Hypoxic control range 0.2 vol.-% up to 20 vol.- % O₂ (regular)
In addition to the CO₂ connection, the chamber provides a gas connection for N₂.
As compared to the ambient air (O₂ concentration of 20.9 vol.-%) only the N₂ concentration needs to be increased, no oxygen is required for the O₂ control. Therefore, it is not necessary and possible to connect an O₂ cylinder. Even with activated O₂ control no O₂ pressure alarm will be emitted.

6.6.2 Alternative control range 10 vol.-% up to 95 vol.-% (option)
In addition to the CO₂ connection, the chamber provides gas connections for O₂ and N₂.
- **Operation in the hyperoxic range (> 22 vol.-% O₂)**
 As compared to the ambient air (O₂ concentration of 20.9 vol.-%) only the O₂ concentration needs to be increased, no nitrogen is required for the O₂ control. Therefore, it is not necessary to connect a N₂ cylinder.
 You can deactivate the N₂ pressure alarm in the controller (chap. 7.3). Then also with activated O₂ control no N₂ pressure alarm will be emitted.
• Alternating operation in the hyperoxic and hypoxic range or in the range from 20 vol.-% O₂ up to 22 vol.-% O₂

N₂ and O₂ are required for O₂ control. It is necessary to connect all gas supplies.

You can deactivate the O₂ and / or N₂ pressure alarm in the controller (chap. 7.3). Then also with activated O₂ control no O₂ and / or N₂ pressure alarm will be emitted.

6.6.3 Operation without O₂ control

You can deactivate the O₂ control in the controller (chap. 6.7). With this setting, no O₂ and N₂ pressure alarms and no O₂ tolerance range alarm will be issued. The zero-voltage relay alarm contact (chap. 11.6) will also not be triggered.

Since neither nitrogen nor oxygen are required, it is not necessary to connect an O₂ or N₂ cylinder.

6.7 Activating / deactivating CO₂, O₂ and humidity control

If CO₂ control and/or O₂ control (chamber with O₂ control) and/or humidity control (chamber with active humidification) shall not be used, it is possible to deactivate them in the controller.

Press the Setpoint setting icon to access the “Setpoint” setting menu from Normal display.

“Setpoints” menu.
Select “Control on/off”.

You can turn on or off CO₂ control and O₂ control (chamber with O₂ control) and humidity control (active humidification)
Mark / unmark the checkbox to activate / deactivate the desired function and press the Confirm icon.

When operating the chamber with deactivated CO₂ control, no CO₂ pressure alarm and no CO₂ tolerance range alarm will be emitted.

Chamber with O₂ control: When operating the chamber with deactivated O₂ control, no O₂ and N₂ pressure alarms and no O₂ tolerance range alarm will be emitted.

Chamber with active humidification: When operating the chamber with deactivated humidity control no humidity tolerance range alarm will be emitted. The controller continues to show the actual humidity value but no longer the humidity set-point.

When operating the chamber with deactivated humidity control, humidification can be realized using the Permadry™ water pan (chap. 6.8).
6.8 Humidity control of the Permadry™ system

With the chamber with active humidification, humidity setting via the Permadry™ System is not required.

The Permadry™ system with its 2-pan water system guarantees a maximum humidity of up to 95 % r.H. in the inner chamber, which remains condensation-free. This performance assumes an average ambient temperature of 22 +/- 3 °C / 71.6 +/- 5.4 °F and a working temperature in the inner chamber of 37 °C / 98.6 °F.

You can increase or decrease humidity slightly via the heating of the water pan if required.

Humidity is infinitely adjustable in whole numbers from -5 (low) to +5 (high).

Factory setting: “0” (medium).

Setting:
Path: Main menu > Settings > Various

Submenu “Various”.
Select the field “Humidity control”

If the ambient temperature deviates by more than +/- 5 °C from the values recommended by the manufacturer, the conditions for maximum air humidity with condensation-free inner chamber are no longer guaranteed. Contact BINDER Service for assistance.
7. Set-point entry in “Fixed value” operating mode

In Fixed value operating mode you can enter set-points for temperature, CO₂ and O₂ (chamber with O₂ control) and humidity (chamber with active humidification), and the switching-state of up to 16 operation lines.

All settings made in Fixed value operating mode remain valid until the next manual change. They are saved also when turning off the chamber or in case of toggling to Idle Mode or Program Mode.

<table>
<thead>
<tr>
<th>Setting ranges</th>
<th>Control ranges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>20 °C / 68 °F up to 60 °C / 140 °F</td>
</tr>
<tr>
<td>Temperature (chamber with O₂ control)</td>
<td>6 °C / 10.8 °F above ambient temperature up to 60 °C / 140 °F</td>
</tr>
<tr>
<td>CO₂</td>
<td>0 vol.-% up to 20 vol.- %</td>
</tr>
<tr>
<td>O₂ (chamber with O₂ control, with regular hypoxic control range)</td>
<td>0.2 vol.-% up to 21 vol.- %</td>
</tr>
<tr>
<td>O₂ (chamber with O₂ control, with optional alternative control range)</td>
<td>5 vol.-% up to 95 vol.-%</td>
</tr>
<tr>
<td>Humidity (chamber with active humidification)</td>
<td>50 % r.h. up to 95 % r.h.</td>
</tr>
</tbody>
</table>

With set-point type “Limit”, adapt the safety controller (chap. 12.2) always when you changed the temperature set-point. Set the safety controller set-point by approx. 2 °C above the controller temperature set-point.

Recommended setting: Set-point type “Offset” with safety controller set-point 2 °C.

When setting a lower temperature setpoint, in order to save time, we recommend cooling down the chamber by turning it off and opening both chamber doors.

When setting a lower CO₂, O₂ or humidity setpoint, the gas or humidity must be able to escape first. Open both chamber doors for this purpose. Observe the precautions when working with gases (chap. 1.8).
7.1 Set-point entry through the “Setpoints” menu

Press the Setpoint setting icon to access the “Setpoint” setting menu from Normal display.

- Select the field “Temperature” and enter the desired temperature setpoint.
 Setting range: 20 °C up to 60 °C. Confirm entry with Confirm icon.
- Select the field “CO2” and enter the desired CO2 setpoint.
 Setting range: 0 vol.-% up to 20 vol.-%.
 Confirm entry with Confirm icon.

Chamber with O₂ control:
- Select the field “O₂” and enter the desired O₂ setpoint.
 Setting range with regular hypoxic control range: 0.2 vol.-% up to 20 vol.-%.
 Setting range with alternative control range: 5 vol.-% up to 95 vol.-%.
 Confirm entry with Confirm icon.

Chamber with active humidification:
- Select the field “Humidity” and enter the desired humidity setpoint.
 Setting range: 50 % r.h. up to 95 % r.h. Confirm entry with Confirm icon.

When entering a humidity setpoint value > 90 % r.h. a message window appears, indicating that condensation is possible. Press the Confirm icon.

When entering a setpoint value outside the setting range, the message: “Value outside of limits! (Min: xxx, Max: xxx)” appears (xxx is a wildcard for the limits of the respective parameter). Press the Confirm icon and repeat the entry with a correct value.

After completing the settings, press the Confirm icon to take over the entries and exit the menu, or press the Close icon to exit the menu without taking over the entries.
7.2 Direct setpoint entry via Normal display

Alternatively you can also enter the setpoints directly via Normal display.

<table>
<thead>
<tr>
<th>Fixed value</th>
<th>Setpoint</th>
<th>Actual value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>°C</td>
<td>37.0</td>
</tr>
<tr>
<td>CO₂</td>
<td>%</td>
<td>5.0</td>
</tr>
<tr>
<td>O₂</td>
<td>%</td>
<td>21.0</td>
</tr>
<tr>
<td>Humidity</td>
<td>%RH</td>
<td>93.0</td>
</tr>
</tbody>
</table>

Normal display. Select the setpoint you want to change.

Example: “Temperature” entry menu. Enter the desired setpoint and confirm entry with **Confirm** icon.

When entering a humidity setpoint value > 90 % r.h. a message window appears, indicating that condensation is possible. Press the **Confirm** icon.
7.3 Special controller functions via operation lines

Press the **Setpoint setting** icon to access the “Setpoint” setting menu from Normal display.

You can define the switching state of up to 16 operation lines (control contacts). They are used to activate / deactivate special controller functions.

Chamber with O₂ control: Depending on the required range of O₂ concentration, the type of gas which is required may vary (chap. 6.6). Therefore, the pressure alarms for O₂ and N₂ can be deactivated individually with active O₂ control.

For chambers equipped with the optional interior socket (chap. 18.4) you can turn on and off the voltage of the interior socket via the controller.

- **Operation line “Idle mode”** activates / deactivates the operating mode “Idle mode”.
- **Operation line “O₂ pressure alarm off”** activates / deactivates the O₂ pressure alarm (chamber with O₂ control)
- **Operation line “N₂ pressure alarm off”** activates / deactivates the N₂ pressure alarm (chamber with O₂ control)
- **Operation line “Interior socket”** activates / deactivates interior socket (option, available via BINDER INDIVIDUAL Customized Solutions)

The other operation lines are without function.

Use the “Setpoints” menu to configure the operation lines.

![Setpoints menu](image)

“Setpoints” menu.
Select the field “Functions on/off”.

Activated operation line: switching status “1” (On)
Deactivated operation line: switching status “0” (Off)

The operation lines count from right to left.

Example:
Activated operation line “Idle mode” = 0000000000000001
Deactivated operation line “Idle mode” = 0000000000000000
7.4 Safety instructions for setting high gas concentrations

Notes on handling carbon dioxide (CO₂)

Carbon dioxide (CO₂) in high concentrations is hazardous to health. It is colorless and almost odorless and therefore practically imperceptible. Vent out any CO₂ gas that may escape via good room ventilation or a suitable connection to an exhaust system. We recommend installing a CO₂ warning system.

<table>
<thead>
<tr>
<th>DANGER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Danger of suffocation and poisoning by high concentration of CO₂ (> 4 Vol.-%).</td>
</tr>
<tr>
<td>Death by suffocation.</td>
</tr>
<tr>
<td>☇ Do NOT set up chambers in non-ventilated recesses.</td>
</tr>
<tr>
<td>➢ Ensure technical ventilation measures.</td>
</tr>
<tr>
<td>➢ Observe the relevant regulations for handling CO₂.</td>
</tr>
<tr>
<td>➢ Close the CO₂ supply when decommissioning the chamber.</td>
</tr>
</tbody>
</table>

If CO₂ is released, leave the area and inform the security service or fire department.

Chamber with O₂ control: Notes on handling oxygen (O₂)

Oxygen (O₂) is colorless and almost odorless and therefore practically imperceptible. It promotes burns, which can proceed explosively. There is a fire hazard for flammable oxygenated materials, e.g. clothes and hair. O₂ is heavier than air and may accumulate in low-lying areas.

<table>
<thead>
<tr>
<th>DANGER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Danger of fire and explosion through contact of combustible materials with O₂ with high concentration of O₂ (> 21 % O₂).</td>
</tr>
<tr>
<td>Serious injury or death from burns and / or explosion pressure.</td>
</tr>
<tr>
<td>☇ Do NOT set up chambers in non-ventilated recesses.</td>
</tr>
<tr>
<td>➢ Ensure technical ventilation measures.</td>
</tr>
<tr>
<td>➢ Observe the relevant regulations for handling O₂.</td>
</tr>
<tr>
<td>➢ Close the O₂ supply when decommissioning the chamber.</td>
</tr>
</tbody>
</table>

Take appropriate measures to prevent oxygen enrichment and fire and explosion hazards in areas where oxygen enrichment is possible.

Observe the general information for safe handling of oxygen (chap. 1.8).

Chamber with O₂ control: Notes on handling nitrogen (N₂)

Nitrogen (N₂) in high concentrations is hazardous to health. It is colorless and almost odorless and therefore practically imperceptible. Any N₂ gas that may escape must be safely led out via good room ventilation or a suitable connection to an exhaust system.

<table>
<thead>
<tr>
<th>DANGER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk of suffocation through high concentration of N₂.</td>
</tr>
<tr>
<td>Death by suffocation.</td>
</tr>
<tr>
<td>☇ Do NOT set up chambers in non-ventilated recesses.</td>
</tr>
<tr>
<td>➢ Ensure technical ventilation measures.</td>
</tr>
<tr>
<td>➢ Observe the relevant regulations for handling N₂.</td>
</tr>
<tr>
<td>➢ Close the N₂ supply when decommissioning the chamber.</td>
</tr>
</tbody>
</table>
8. Timer program: stopwatch function

During an entered duration the controller constantly equilibrates to the setpoints entered in Fixed value operation mode (temperature, CO₂, O₂ (chamber with O₂ control), humidity (chamber with active humidification), configuration of the operation lines). This duration can be entered as a “Timer program”. During the program runtime, any setpoint changes do not become effective; the controller equilibrates to the values which were active during program start.

8.1 Starting a timer program

In Normal display press the Program start icon to access the “Program start” menu.

- In the field “Program type” select “Timer program”.
- Select the field “Program duration” and enter the desired program duration. Press the Confirm icon.
- Select the field “Program start” and enter the desired start time of the program in the “Program start” entry menu. Press the Confirm icon. The program delay time until program start begins.

8.1.1 Performance during program delay time

During the configured program delay time until program start, the controller equilibrates to the current setpoints of Fixed value operation mode. Modifications of these setpoints are possible but become effective only after the timer program is finished. When the configured moment for program start is reached, the program delay time ends and the program starts running. The controller equilibrates to the values which had been active during program start.
8.2 Stopping a running timer program

8.2.1 Pausing a running timer program

Press the **Program pause** icon to interrupt the program.

The program is paused. The program runtime stops running down, the time display flashes. There are the following options:

- Press the **Program start** icon to continue the program
- Press the **Cancelling** icon to cancel the program

8.2.2 Cancelling a running timer program

Press the **Program cancelling** icon to cancel the program.

A confirmation prompt is displayed. Press the **Confirm** icon to confirm that the program shall really be cancelled.

After confirming the message the controller changes to Fixed value operation mode. Temperature and humidity will then equilibrate to the setpoints of Fixed value operation mode.

8.3 Performance after the end of the program

After the end of the program the message “Device changes to fixed value operation mode” appears on the screen. Press the **Confirm** icon.

After confirming the message the controller changes to Fixed value operation mode. Temperature and humidity will then equilibrate to the setpoints of Fixed value operation mode.
9. Time programs

The MB2 program controller permits programming time programs with real-time reference. It offers 25 program memory positions with up to 100 program sections each.

For each program section you can enter set-points for temperature, CO₂, O₂ (chamber with O₂ control), and humidity (chamber with active humidification), section duration, type of set-point transition (ramp or step) and the tolerance ranges.

If the safety controller has been set to “limit” mode, check the setting of the safety controller when changing the temperature set-point, (chap. 12.2).

Programming remains saved in case of a power failure or after turning off the unit.

Path: Main menu > Programs> Time program

9.1 Starting an existing time program

In Normal display press the **Program start** icon to access the “Program start” menu.

In the field “Program type” select the setting “Time program”.

In the field “Program” select the desired program.

Select the field “Program start” and enter the desired program start time in the “Program start” entry menu. Press the **Confirm** icon. The program delay time until program start begins.

The program end is adapted automatically depending on the entered program duration.

After completing the settings, press the **Confirm** icon to take over the entries and exit the menu. The program starts running.

If instead you press the **Close** icon to exit the menu without taking over the entries, the program will not start.

Normal display. Information on the bottom of the screen indicates the currently running program and the time already passed. The grey bar shows how much time of the whole time is elapsed. If program duration has been set to infinite, the grey bar is not displayed.
9.1.1 Performance during program delay time

During the configured program delay time until program start, the controller equilibrates to the current setpoints of Fixed value operation mode. Modifications of these setpoints are effective. When the configured moment for program start is reached, the program delay time ends and the program starts running.

9.2 Stopping a running time program

9.2.1 Pausing a running time program

Press the **Program pause** icon to interrupt the program.

The program is paused. The program runtime stops running down, the time display flashes.

There are the following options:

- Press the **Program start** icon to continue the program
- Press the **Cancelling** icon to cancel the program

9.2.2 Cancelling a running time program

Press the **Program cancelling** icon to cancel the program.

A confirmation prompt is displayed. Press the **Confirm** icon to confirm that the program shall really be cancelled.

After confirming the message, the controller changes to Fixed value operation mode. Temperature and humidity will then equilibrate to the setpoints of Fixed value operation mode.

9.3 Performance after the end of the program

After the end of the program the message “Device changes to fixed value operation mode” appears on the screen.

Press the **Confirm** icon.

As long as the message has not been confirmed, the setpoint of the last program section remains effective. Program the last section as desired. If the heating, CO₂ control, O₂ control (chamber with O₂ control) and humidification (chamber with active humidification) shall turn off, activate operation line “Idle mode” in the last program section.

After confirming the message the controller changes to Fixed value operation mode. The setpoints of Fixed value operation mode are then equilibrated.
9.4 Creating a new time program

Path: Main menu > Programs > Time program

"Time program" menu: overview of the existing programs.
Select an empty program place.

Enter the program name and, if desired, additional program information in the corresponding fields.
Press the Confirm icon.
The program view opens (chap. 9.5).

9.5 Program editor: program management

Path: Main menu > Programs > Time program

"Time program" menu: overview of the existing programs.
Select an existing program (example: program 3) or create a new program (chap. 9.4).
The program view opens.

Program view (example: program 1).
If a new program has been created, there is just one program section.
There are the following options:

1. Select a program section to open the section editor (chap. 9.6)
2. Press the Edit icon to open the program editor
9.5.1 Deleting a time program

Path: *Main menu > Programs > Time program*

In the “Time program” menu select the program to be deleted. The program view opens.

- In the **program view** press the **Edit** icon to open the program editor.
- In the **program editor** select “Delete program” and press the **Confirm** icon.

The program is deleted. The controller returns to the program view.
9.6 Section editor: section management

Path: Main menu > Programs > Time program

Select the desired program.

Program view.
Select the desired program section (example: section 1)

Section view (example: section 1).
There are the following options:

1. Select a parameter to enter or modify the according value (chap. 9.7)
2. Press the Edit icon to open the program editor

Section editor: “Edit section” menu
Select the desired function and press the Confirm icon.

The section editor offers following options:

- Copy section
- Replace section: Replacing an existing section with the copied section. This menu point is visible only after a section has been copied.
- Insert section: Adding the copied section. This menu point is visible only after a section has been copied.
- Delete section
- Add new section
9.6.1 Add a new program section

Section editor: “Edit section” menu.
Select “Create new section” and press the Confirm icon.
Then select whether to insert the new section before or after the current section.

Press the Confirm icon. The new section opens.

9.6.2 Copy and insert or replace a program section

Program view.
Select the program section to be copied (example: section 1)

Section editor: “Edit section” menu
Select “Copy section” and press the Confirm icon.
The current section (example: section 1) is copied.
The controller returns to the section view.

Section view (example: section 1).
Press the Edit icon to open the section editor.

Section view (example: section 1).
Press the Close icon to change to the program view, if you want to select another section to be replaced or before or after which the copied section shall be inserted…
or

Press the **Edit** icon to open the section editor if you want the current section to be replaced or the copied section to be inserted before or after it.

Program view.
Select the section to be replaced or before or after which the copied section shall be inserted (example: section 2) and press the **Confirm** icon.

Section view (example: section 1).
Press the **Edit** icon to open the section editor.

Select “Replace section” to replace the selected section with the copied section

or

Select “Insert section” to additionally add the copied section.
In this case select whether to insert it before or after the selected section.

Press the **Confirm** icon.

9.6.3 Deleting a program section

In the **program view** select the program section to be deleted. The section view opens.

In the **section view** press the **Edit** icon to open the section editor.

In the **section editor** select “Delete section” and press the **Confirm** icon.

The section is deleted. The controller returns to the section view.
9.7 Value entry for a program section

Path: Main menu > Programs > Time program

Select the desired program and section.

The section view gives access to all parameters of a program section. You can enter or modify the values.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program name and section number</td>
<td>Section duration</td>
</tr>
<tr>
<td></td>
<td>Type of setpoint transition: ramp or step</td>
</tr>
<tr>
<td></td>
<td>Operation lines</td>
</tr>
<tr>
<td></td>
<td>Repeating one or several sections within a program</td>
</tr>
<tr>
<td></td>
<td>Temperature setpoint</td>
</tr>
<tr>
<td></td>
<td>Temperature tolerance range: minimum and maximum</td>
</tr>
<tr>
<td></td>
<td>CO₂ setpoint</td>
</tr>
<tr>
<td></td>
<td>CO₂ tolerance range: minimum and maximum</td>
</tr>
<tr>
<td></td>
<td>O₂ setpoint (chamber with O₂ control)</td>
</tr>
<tr>
<td></td>
<td>O₂ tolerance range: minimum and maximum</td>
</tr>
<tr>
<td></td>
<td>Humidity setpoint (chamber with active humidification)</td>
</tr>
<tr>
<td></td>
<td>Humidity tolerance range: minimum and maximum</td>
</tr>
</tbody>
</table>

The setting and control ranges for the individual parameters are the same as for “Fixed value” operating mode (chap. 7).

9.7.1 Section duration

Select the field “Duration” indicating the time.

“Duration” entry menu.

Enter the desired section duration with the arrow keys and press the Confirm icon.

Setting range: 0 up to 99 hours 59 min 59 sec.
9.7.2 Set-point ramp and set-point step

You can define the type of transitions for temperature, CO₂ concentration, O₂ concentration (chamber with O₂ control) and humidity (chamber with active humidification) for each individual program section.

“Ramp” mode: Gradual set-points changes

The set-point of a given program section functions as the section’s start value. During the section’s duration, each set-point gradually passes to the set-point of the subsequent program section. The actual value follows the continually changing set-point.

If the last program section is in “ramp” mode and the setpoint shall change within this section, then you must program an additional section (with the shortest possible section duration) to provide the target value of the last program section. Otherwise, the setpoint would remain constant during the section’s duration.

Programming in the “ramp” mode allows all kinds of temperature and CO₂ / O₂ and humidity transitions:

- Gradual changes of temperature and CO₂ / O₂ concentration and humidity
 The setpoint changes its value gradually during the entered section duration. The actual value follows the continually moving set-point at any time.

- Program sections with constant temperature and CO₂ / O₂ concentration and humidity
 The setpoints (initial values) of two subsequent program sections are identical; so the temperature and humidity remain constant during the entire duration of the first program section.

- Sudden changes of temperature and CO₂ / O₂ concentration and humidity
 Steps can be programmed in ramp mode as temperature / CO₂ / O₂ / humidity changes (ramps) that occur during a very short interval. If the duration of this transitional program section is very short (minimum entry 1 sec), the temperature, CO₂ / O₂ or humidity change will proceed rapidly within the minimum amount of time.

“Step” mode: Sudden set-points changes

The set-point of any program section functions as the section’s target value. At the start of the program section, heating up, attaining the set gas concentration and humidification occur with the maximum speed to reach the set-point values and then remain constant for the remaining section time. Therefore the setpoints remain constant for the section’s duration. These changes occur rapidly within the minimum amount of time (minimum entry: 1 second).

Programming in the “step” mode allows only two kinds of temperature and humidity transitions:

- Programming gradual changes of temperature / CO₂ / O₂ / humidity (ramps) is impossible in the “step” mode

- Program sections with constant temperature and humidity
 The setpoints (target values) of two subsequent program sections are identical; so the temperature and humidity remain constant during the entire duration of the first program section.

- Sudden changes of temperature and humidity
 The entered setpoint of the section is reached as fast as possible and then held constant for the remaining section duration.
Selecting the setting “Ramp” or “Step”

Section view (partial view).
In the field “Course” select the desired setting “Ramp” or “Step”.

“Ramp” and “Step” mode example (representation of a temperature course)

Corresponding program table

<table>
<thead>
<tr>
<th>Section No.</th>
<th>Duration [hh:mm:ss]</th>
<th>Temperature [°C]</th>
<th>CO2 [Vol.-%]</th>
<th>O2 [Vol.-%]</th>
<th>Humidity [% rH]</th>
<th>Ramp or Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>01:00:00</td>
<td>37.5</td>
<td>xxxx</td>
<td>xxxx</td>
<td>xxxx</td>
<td>Step</td>
</tr>
<tr>
<td>2</td>
<td>01:00:00</td>
<td>37.5</td>
<td>xxxx</td>
<td>xxxx</td>
<td>xxxx</td>
<td>Ramp</td>
</tr>
<tr>
<td>3</td>
<td>01:00:00</td>
<td>39.0</td>
<td>xxxx</td>
<td>xxxx</td>
<td>xxxx</td>
<td>Step</td>
</tr>
<tr>
<td>4</td>
<td>00:00:10</td>
<td>39.5</td>
<td>xxxx</td>
<td>xxxx</td>
<td>xxxx</td>
<td>Step</td>
</tr>
<tr>
<td>5</td>
<td>01:00:00</td>
<td>39.5</td>
<td>xxxx</td>
<td>xxxx</td>
<td>xxxx</td>
<td>Step</td>
</tr>
</tbody>
</table>
9.7.3 Special controller functions via operation lines

You can define the switching state of up to 16 operation lines (control contacts). They are used to activate / deactivate special controller functions.

Chamber with O₂ control: Depending on the required range of O₂ concentration, the type of gas which is required may vary (chap. 6.6). Therefore, the pressure alarms for O₂ and N₂ can be deactivated individually with active O₂ control.

For chambers equipped with the optional interior socket (chap. 18.4) you can turn on and off the voltage of the interior socket via the controller.

- Operation line “Idle mode” activates / deactivates the operating mode “Idle mode”.
- Operation line “O₂ pressure alarm off” activates / deactivates the O₂ pressure alarm (chamber with O₂ control)
- Operation line “N₂ pressure alarm off” activates / deactivates the N₂ pressure alarm (chamber with O₂ control)
- Operation line “Interior socket” activates / deactivates interior socket (option, available via BINDER INDIVIDUAL Customized Solutions)

The other operation lines are without function.

Use the Section editor to configure the operation lines.

Activated operation line: switching status “1” (On)
Deactivated operation line: switching status “0” (Off)

The operation lines count from right to left.

Example:

Activated operation line “Idle mode” = 0000000000000001
Deactivated operation line “Idle mode” = 0000000000000000
9.7.4 Setpoint entry

- Select the field “Temperature” and enter the desired temperature setpoint.
 Setting range: 20 °C up to 60 °C.
 Confirm entry with Confirm icon. The controller returns to the section view.

- Select the field “CO2” and enter the desired CO2 setpoint.
 Setting range: 0 vol.-% up to 20 vol.-%.
 Confirm entry with Confirm icon. The controller returns to the section view.

Chamber with O2 control:

- Select the field “O2” and enter the desired O2 setpoint.
 Setting range with regular hypoxic control range: 0.2 vol.-% up to 20 vol.-%.
 Setting range with alternative control range: 5 vol.-% up to 95 vol.-%.
 Confirm entry with Confirm icon. The controller returns to the section view.

Chamber with active humidification:

- Select the field “Humidity” and enter the desired humidity setpoint.
 Setting range: 50 % r.h. up to 95 % r.h.
 Confirm entry with Confirm icon. The controller returns to the section view.

9.7.5 Tolerance range

You can specify tolerance ranges for temperature, CO2 and O2 (chamber with O2 control) and humidity (chamber with active humidification) for each program section with different values for the tolerance minimum and maximum. When the actual value exceeds the given threshold, the program is interrupted. This is indicated on the display (see below). When the actual temperature is situated again within the entered tolerance limits, the program automatically continues. Therefore, the duration of the program may be extended due to the programming of tolerances.

Programming of tolerances may extend program duration.

An entry of “-99999” for the tolerance minimum means “minus infinite” and an entry of “999999” for the tolerance maximum means “plus infinite”. Entry of these values will never lead to program interruption. The entry of “0” for the tolerance minimum and/or maximum deactivates the respective tolerance function.

When requesting rapid value transitions, we recommend not programming tolerance values in order to enable the maximum speed for heating-up and CO2 / O2 control, and humidification.
Select the field “Tolerance band min” and enter the desired lower tolerance band value. Setting range: -99999 to 99999. Confirm entry with **Confirm** icon. The controller returns to the section view.

Select the field “Tolerance band max” and enter the desired upper tolerance band value. Setting range: -99999 to 99999. Confirm entry with **Confirm** icon. The controller returns to the section view.

Set the tolerance ranges for other parameters accordingly, if desired.

If one of the actual values (temperature, CO₂, O₂, humidity) is outside the program tolerance range the whole program course is interrupted. During this program interruption time the controller equilibrates to the set-points of the current section.

The screen header indicates “Program pause (tolerance band)”. The program runtime indication flashes and does not proceed any further.

When the temperature or CO₂ / O₂ or humidity values are back within the entered program tolerance range, the program continues automatically.

9.7.6 Repeating one or several sections within a time program

You can repeat several subsequent sections together. It is not possible to define the start section the same time also as the target section, therefore you cannot repeat a single individual section.

Enter the desired number of repetitions in the field „Number of repetitions“ and the number of the section to start the repetition cycle with in the field „Start section for repetition“ To have sections repeated infinitely, enter the number of repetitions as “-1”.

The selected sections are repeated as many times as selected. Then the program continues.

![Section view, showing the repetition function](image)

Select the field “Number of repetitions” and enter the desired number of repetitions. Setting range: 1 to 99, and -1 for infinite. Confirm entry with **Confirm** icon. The controller returns to the section view.

Select the field “Start section for repetition” and enter the section number, at which the repetition should start. Setting range: 1 up to the section before the currently selected section. Confirm entry with **Confirm** icon. The controller returns to the section view.
9.7.7 Saving the time program

Section view.
After the all desired values of the program section have been configured, press the **Confirm** icon to take over the programming. The controller changes to the program view.

Program view.
Press the **Confirm** icon to take over the programming.
The controller changes to the Normal display.

To save the programming it is absolutely required to press the **Confirm** icon. Otherwise all settings will be lost! There is no confirmation prompt!
10. Week programs

The MB2 program controller permits programming week programs with real-time reference. It offers 5 week program places in total with up to 100 shift points for each week program.

Path: Main menu > Programs > Week program

10.1 Starting an existing week program

In Normal display press the Program start icon to access the “Program start” menu.

- In the field “Program type” select the setting “Week program”.
- In the field “Program” select the desired program.
- There are no further settings available in the “Program start” menu for week programs, as they are needed only for time programs.

After completing the settings, press the Confirm icon to take over the entries and exit the menu. The program starts running.

If instead you press the Close icon to exit the menu without taking over the entries, the program will not start.

After starting the week program, the previously entered week program setpoints are active and will be equilibrated according to the current time.

Information on the bottom of the screen indicates the currently running program.

10.2 Cancelling a running week program

Press the Program cancelling icon to cancel the program.

A confirmation prompt is displayed. Press the Confirm icon to confirm that the program shall really be cancelled.

After confirming the message the controller changes to Fixed value operation mode. Temperature and humidity will then equilibrate to the setpoints of Fixed value operation mode.
10.3 Creating a new week program

Path: Main menu > Programs > Week program

“Week program” menu: overview of the existing programs. Select an empty program place.

Enter the program name and, if desired, additional program information in the corresponding fields. Select the set-point course “Ramp” or “Step” (chap. 10.6.1). Press the Confirm icon. The program view opens.

Program view. For the first section no weekday is specified. Therefore the section is first marked in red and cannot be saved.
10.4 Program editor: program management

Path: **Main menu > Programs > Week program**

“Week program” menu:
Overview of the existing programs.
Select an existing program (example: program 1).

Program view (example: program 1).
If a new program has been created, there is just one program section.

There are the following options:

1. Select a program section to open the section editor (chap. 10.4.1)
2. Press the **Edit** icon to open the program editor

Program editor: “Edit program” menu.
Select the desired function and press the **Confirm** icon.

The program editor offers following options:

- Change program name. This menu also offers to configure the ramp / step mode setting (chap. 10.6.1).
- Copy program
- Replace program: Replacing an new or an existing program with the copied program. This menu point is visible only after a section has been copied.
- Delete program
- Add new section
To add a new section, select “Create new section” and press the **Confirm** icon. The program view opens.

With a new section no weekday is specified. Therefore the section is first marked in red and cannot be saved.

A new section is always added at the very bottom (example: section 3). When the section start is specified the sections are automatically arranged in the correct chronological order.

10.4.1 Deleting a week program

Path: **Main menu > Programs > Week program**

In the “Week program” menu select the program to be deleted. The program view opens.

- In the **program view** press the **Edit** icon to open the program editor
- In the **program editor** select “Delete program” and press the **Confirm** icon.

 The program is deleted. The controller returns to the program view.
10.5 Section editor: section management

Path: Main menu > Programs > Week program

Select the desired program.

Program view.
Select the desired program section (example: section 1)

Section view (example: section 1).
There are the following options:

1. Select a parameter to enter or modify the according value (chap. 10.6)
2. Press the Edit icon to open the program editor

Section editor: “Edit section” menu
Select the desired function and press the Confirm icon.

The section editor offers following options:

- Copy section
- Replace section: Replacing an existing section with the copied section. This menu point is visible only after a section has been copied.
- Insert section: Adding the copied section. This menu point is visible only after a section has been copied.
- Delete section
- Create new section
10.5.1 Add a new program section

Section editor: “Edit section” menu.
Select “Create new section” and press the Confirm icon.

With a new section no weekday is specified. Therefore the section is first marked in red and cannot be saved.
A new section is always added at the very bottom (example: section 3). When the section start is specified the sections are automatically arranged in the correct chronological order.

10.5.2 Copy and insert or replace a program section

Section editor: “Edit section” menu
Select “Copy section” and press the Confirm icon.
The current section (example: section 1) is copied.
The controller returns to the program view.

Program view
Select the section to be replaced or before or after which the copied section shall be inserted (example: section 2).
Press the Confirm icon
The controller returns to the section editor.
Select “Replace section” to replace the selected section with the copied section
or
Select “Insert section” to additionally add the copied section.
Press the Confirm icon.
If you selected “Insert section” the sections are automatically arranged in the correct chronological order.

10.5.3 Deleting a program section

In the program view select the program section to be deleted. The section view opens.

 In the section view press the Edit icon to open the section editor

 In the section editor select “Delete section” and press the Confirm icon.

The section is deleted. The controller returns to the section view.

10.6 Value entry for a program section

Path: Main menu > Programs > Week program

Select the desired program and section.

The setting and control ranges for the individual parameters are the same as for “Fixed value” operating mode (chap. 7).

10.6.1 Set-point ramp and set-point step modes

The explanation of the settings “Ramp” or “Step” is given in chap. 9.7.2.

You can define the type of transitions for temperature, CO₂ concentration, O₂ concentration (chamber with O₂ control) and humidity (chamber with active humidification) for the entire week program.

Select the desired program and press the Edit icon to open the program editor. In the program editor select the “Change program name” function and press the Confirm icon.
“Change program name” menu. In the field “Course” select the desired setting “Ramp” or “Step” and press the Confirm icon.

10.6.2 Weekday

In the field “Weekday” select the desired weekday.

Section view.

With “Daily” selected, this section will run every day at the same time.

10.6.3 Start time

Select the field “Moment”.

Entry menu “Moment”. Select with the arrow keys the desired start moment of the section and press the Confirm icon.
10.6.4 Setpoint entry

- Select the field “Temperature” and enter the desired temperature setpoint.
 Setting range: 20 °C up to 60 °C.
 Confirm entry with Confirm icon. The controller returns to the section view.
- Select the field “CO2” and enter the desired CO2 setpoint.
 Setting range: 0 vol.-% up to 20 vol.-%.
 Confirm entry with Confirm icon. The controller returns to the section view.

Chamber with O2 control:

- Select the field “O2” and enter the desired O2 setpoint.
 Setting range with regular hypoxic control range: 0.2 vol.-% up to 20 vol.-%.
 Setting range with alternative control range: 5 vol.-% up to 95 vol.-%.
 Confirm entry with Confirm icon. The controller returns to the section view.

Chamber with active humidification:

- Select the field “Humidity” and enter the desired humidity setpoint.
 Setting range: 50 % r.h. up to 95 % r.h.
 Confirm entry with Confirm icon. The controller returns to the section view.

10.6.5 Special controller functions via operation lines

You can define the switching state of up to 16 operation lines (control contacts). They are used to activate / deactivate special controller functions.

Chamber with O2 control: Depending on the required range of O2 concentration, the type of gas which is required may vary (chap. 6.6). Therefore, the pressure alarms for O2 and N2 can be deactivated individually with active O2 control.

For chambers equipped with the optional interior socket (chap. 18.4) you can turn on and off the voltage of the interior socket via the controller.

- Operation line “Idle mode” activates / deactivates the operating mode “Idle mode”.
- Operation line “O2 pressure alarm off” activates / deactivates the O2 pressure alarm (chamber with O2 control)
- Operation line “N2 pressure alarm off” activates / deactivates the N2 pressure alarm (chamber with O2 control)
- Operation line “Interior socket” activates / deactivates interior socket (option, available via BINDER INDIVIDUAL Customized Solutions)

The other operation lines are without function.

Select the desired program and section. You can set the operation lines in the “Functions on/off” field.
For details please refer to chap. 9.7.3.
11. Notification and alarm functions

11.1 Notification and alarm messages overview

11.1.1 Notifications

Notifications are indicated by information icons displayed in the screen header in Normal display.

An information icon serves as an indication of a certain condition.

If this condition persists, in some cases an alarm will be triggered after a fix or configurable interval. As long as the condition persists, the information icon therefore continues to be displayed also in state of alarm. If during alarm the conditions ends, e.g., if during a tolerance range alarm the actual value returns to within the tolerance range, the information icon disappears, whereas the alarm will continue until manual acknowledgement.

Press the flash icon next to the information icon to access the corresponding text information.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Information icon</th>
<th>Text information</th>
<th>Start after condition occurred</th>
</tr>
</thead>
<tbody>
<tr>
<td>The controller is in Idle mode (chap. 5.4).</td>
<td>⚫</td>
<td>“Idle mode”</td>
<td>immediately</td>
</tr>
<tr>
<td>Chamber door open</td>
<td>⛔️</td>
<td>“Door open”</td>
<td>immediately</td>
</tr>
<tr>
<td>CO₂ pressure alarm deactivated</td>
<td>⬇️</td>
<td>“CO₂ pressure alarm off”</td>
<td>immediately</td>
</tr>
<tr>
<td>Chamber with O₂ control: O₂ pressure alarm deactivated</td>
<td>⚪️</td>
<td>“O₂ pressure alarm off”</td>
<td>immediately</td>
</tr>
<tr>
<td>Chamber with O₂ control: N₂ pressure alarm deactivated</td>
<td>⬇️</td>
<td>“N₂ pressure alarm off”</td>
<td>immediately</td>
</tr>
<tr>
<td>Interior socket (option) activated</td>
<td>⬇️</td>
<td>“Interior socket”</td>
<td>immediately</td>
</tr>
</tbody>
</table>

Notifications are not shown in the event list.
11.1.2 Alarm messages

<table>
<thead>
<tr>
<th>Condition</th>
<th>Alarm message</th>
<th>Start after condition occurred</th>
<th>Zero-voltage relay alarm output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Having reached the setpoint, the actual temperature value deviates by more than the set tolerance range value and longer than the set delay time from the setpoint or the temperature doesn’t reach the tolerance range within 3 hours from turning on the chamber or closing the door.</td>
<td>“Temperature range”</td>
<td>After configurable delay time (chap. 11.5). Factory setting: 10 minutes</td>
<td>With alarm start</td>
</tr>
<tr>
<td>Having reached the setpoint, the actual CO₂ concentration deviates by more than the set tolerance range value and longer than the set delay time from the setpoint or the CO₂ concentration doesn’t reach the tolerance range within 3 hours from turning on the chamber or closing the door.</td>
<td>“CO₂ range”</td>
<td>After configurable delay time (chap. 11.5). Factory setting: 10 minutes</td>
<td>With alarm start</td>
</tr>
<tr>
<td>Chamber with O₂ control: Having reached the setpoint, the actual O₂ concentration deviates by more than the set tolerance range value and longer than the set delay time from the setpoint or the O₂ concentration doesn’t reach the tolerance range within 3 hours from turning on the chamber or closing the door.</td>
<td>“O₂ range”</td>
<td>After configurable delay time (chap. 11.5). Factory setting: 10 minutes</td>
<td>With alarm start</td>
</tr>
<tr>
<td>Chamber with active humidification: Having reached the setpoint, the actual humidity value deviates by more than the set tolerance range value and longer than the set delay time from the setpoint or the humidity doesn’t reach the tolerance range within 3 hours from turning on the chamber or closing the door.</td>
<td>“Humidity range”</td>
<td>After configurable delay time (chap. 11.5). Factory setting: 10 minutes</td>
<td>With alarm start</td>
</tr>
<tr>
<td>Chamber door is open for longer than the set delay time.</td>
<td>“Door open”</td>
<td>After configurable delay time (chap. 11.5). Factory setting: 1 minute</td>
<td>----</td>
</tr>
<tr>
<td>Power failure</td>
<td>---</td>
<td>---</td>
<td>immediately</td>
</tr>
<tr>
<td>Condition</td>
<td>Alarm message</td>
<td>Start after condition occurred</td>
<td>Zero-voltage relay alarm output</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------</td>
<td>--------------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Exceeded setpoint of the safety controller class 3.1</td>
<td>"Safety controller"</td>
<td>immediately</td>
<td>----</td>
</tr>
<tr>
<td>Low CO₂ outlet pressure (< 0.3 bar / 4.4 psi)</td>
<td>"CO₂ pressure"</td>
<td>immediately</td>
<td>----</td>
</tr>
<tr>
<td>Chamber with O₂ control: Low O₂ outlet pressure (< 0.3 bar / 4.4 psi)</td>
<td>"O₂ pressure"</td>
<td>immediately</td>
<td>----</td>
</tr>
<tr>
<td>Chamber with O₂ control: Low N₂ outlet pressure (< 0.3 bar / 4.4 psi)</td>
<td>"N₂ pressure"</td>
<td>immediately</td>
<td>----</td>
</tr>
<tr>
<td>Temperature sensor defective</td>
<td>e.g. "-----" or "<..<.< or >->->"</td>
<td>immediately</td>
<td>immediately</td>
</tr>
<tr>
<td>Safety controller temperature sensor defective</td>
<td>Safety controller sensor</td>
<td>immediately</td>
<td>immediately</td>
</tr>
<tr>
<td>CO₂ sensor defective. Contact BINDER Service.</td>
<td>"CO₂ sensor fault"</td>
<td>immediately</td>
<td>immediately</td>
</tr>
<tr>
<td>Chamber with O₂ control: O₂ sensor defective. Contact BINDER Service</td>
<td>"O₂ sensor fault"</td>
<td>immediately</td>
<td>immediately</td>
</tr>
<tr>
<td>Chamber with active humidification: Humidity sensor defective. Contact BINDER Service</td>
<td>"Humid sensor fault"</td>
<td>immediately</td>
<td>immediately</td>
</tr>
<tr>
<td>Hot air sterilization running</td>
<td>"Sterilization"</td>
<td>immediately</td>
<td>----</td>
</tr>
<tr>
<td>Chamber with active humidification: The humidity module is defective. Contact BINDER Service.</td>
<td>"Humidity system"</td>
<td>immediately</td>
<td>immediately</td>
</tr>
<tr>
<td>Chamber with active humidification: The humidity module cannot fill up. Possible causes: • Freshwater bag is empty or contains air • The silicon tube is not correctly inserted into the pump • Silicon tube kinked Humidification turns off. When the water supply is functional again, the humidity system restarts, or the chamber is defective.</td>
<td>"Freshwater supply"</td>
<td>immediately</td>
<td>immediately</td>
</tr>
</tbody>
</table>

Alarm messages are displayed in the list of active alarms until acknowledging them. They are also shown in the event list.

> When operating the chamber without CO₂ / O₂ / N₂ connection, turn off the corresponding gas control in the “setpoints” menu (chap. 6.7) in order to avoid tolerance range and pressure alarms.

> **Chamber with active humidification:** When operating the chamber without water supply, turn off humidity control in the “setpoints” menu (chap. 6.7) in order to avoid humidity alarms.
11.2 State of alarm

1. Visual indications in Normal display: alarm message, screen header flashing in red color
2. Audible alert, if the buzzer is enabled (chap. 11.4).
3. In some cases: Switching the zero-voltage relay alarm output (chap. 11.6) to transmit the alarm e.g., to a central monitoring system.

Normal display in state of alarm (example).
(a) Screen header flashing in red color and showing the alarm message
(b) Alarm icon on the bottom of the screen: change to the list of active alarms and alarm acknowledgement
(c) If applicable, information icon in the screen header. Indication of a certain condition

11.3 Resetting an alarm, list of active alarms

Pressing the Reset alarm icon mutes the buzzer for all active alarms. The icon then disappears.

- Acknowledging while the alarm condition persists: Only the buzzer turns off. The visual alarm indication remains on the controller display. The alarm remains in the list of active alarms.
 When the alarm condition has ended, the visual alarm indication is automatically cleared. The alarm is then no longer in the list of active alarms.
- Acknowledging after the alarm condition has ended: The buzzer and the visual alarm indication are reset together. The alarm is then no longer in the list of active alarms.
- The zero-voltage relay alarm output resets together with the alarm.

For appropriate actions in the event of an alarm, please refer to chap. 22.6 “Troubleshooting”.

Normal display in state of alarm (example).
List of active alarms. Press the Reset alarm icon.
11.4 Activating / deactivating the audible alarm (alarm buzzer)

Path: Main menu > Settings > Chamber

<table>
<thead>
<tr>
<th>Chamber</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chamber name</td>
<td>CB 170 02 (E7)</td>
</tr>
<tr>
<td>Language</td>
<td>English</td>
</tr>
<tr>
<td>Language query after restart</td>
<td>No</td>
</tr>
<tr>
<td>Temperature unit</td>
<td>Degrees Celsius</td>
</tr>
<tr>
<td>Audible alarm</td>
<td>off</td>
</tr>
</tbody>
</table>

“Chamber” submenu (example). In the field “Audible alarm” select the desired setting “off” or “on” and press the Confirm icon.

11.5 Tolerance range settings and alarm delay times

Path: Main menu > Settings > Various

![Image](image2.png)

Submenu “Various”. Select the desired function.

In this menu you can set the deviation between the actual value and setpoint for temperature, CO₂, O₂ (chamber with O₂ control) and humidity (chamber with active humidification) which shall cause a tolerance range alarm, and you can define the delay time after which the tolerance alarm will be triggered.

Also you can set the delay time after opening the door will trigger an alarm.

The entered value defines the tolerance range around the setpoint value. Example: Temperature setpoint: 37 °C, tolerance range value: +/- 2 °C, i.e. this defines a tolerance range from 35 °C up to 39 °C.

Alarms following deviations from the tolerance range or door opening

If the actual value, after having reached the setpoint, deviates by more than the set tolerance range value and longer than 10 min. from the setpoint or the temperature doesn’t reach the tolerance range within 3 hours from turning on the chamber or closing the door, after the configured interval (e.g., “Temp range alarm delay”) an alarm is triggered. It is visually indicated in Normal display. If the alarm buzzer is activated (chap. 11.4) there is an audible alert. The zero-voltage relay alarm output (chap. 11.6) switches to transmit the alarm. The alarm is shown in the list of active alarms (chap. 11.3).
Alarm message	Start after condition occurred
“Temperature range” | after configurable time
“CO₂ range” | after configurable time
“O₂ range” | after configurable time
“Humidity range” | after configurable time
“Door open” | after configurable time

If the condition (deviation from the tolerance range or door opening) ends within the configured alarm delay time, no alarm will be triggered after the delay time.

When operating the chamber with deactivated CO₂, O₂ (chamber with O₂ control) or humidity (chamber with active humidification) control (chap. 6.7), the corresponding tolerance range alarms will not occur.

Setting:

- Select the field “Temperature range” and enter the desired value for the temperature range. Setting range: 1 °C to 10 °C. Confirm entry with Confirm icon.
- Select the field “Temp alarm delay” and enter the time in minutes, after which the range alarm shall be triggered. Setting range: 1 min to 120 min. Confirm entry with Confirm icon.
- Select the field “CO₂ range” and enter the desired value for the CO₂ range. Setting range: 1 vol.-% to 10 vol.-%. Confirm entry with Confirm icon.
- Select the field “CO₂ alarm delay” and enter the time in minutes, after which the range alarm shall be triggered. Setting range: 1 min to 120 min. Confirm entry with Confirm icon.
- Select the field “O₂ range” and enter the desired value for the O₂ range. Setting range: 1 vol.-% to 10 vol.-%. Confirm entry with Confirm icon.
- Select the field “O₂ alarm delay” and enter the time in minutes, after which the range alarm shall be triggered. Setting range: 1 min to 120 min. Confirm entry with Confirm icon.
- Select the field “Humidity range” and enter the desired value for the humidity range. Setting range: 5% r.h. to 20% r.h. Confirm entry with Confirm icon.
- Select the field “Humid alarm delay” and enter the time in minutes, after which the range alarm shall be triggered. Setting range: 1 min to 120 min. Confirm entry with Confirm icon.
- Select the field “Door alarm delay” and enter the time in minutes, after which the range alarm shall be triggered. Setting range: 1 min to 120 min. Confirm entry with Confirm icon.

After completing the settings, press the Confirm icon to take over the entries and exit the menu, or press the Close icon to exit the menu without taking over the entries.
11.6 Zero-voltage relay alarm output

The chamber is equipped with a zero-voltage relay output which permits the transmission of some alarm messages to a central monitoring system.

The connection is realized as a DIN socket (3) on the chamber rear. A suitable DIN plug is enclosed.

Figure 29: Pin configuration of the DIN socket (3) on the chamber rear

In case there is no alarm, contact 1 closes with contact 3.

Closing contact 1 with contact 2 switches the zero-voltage relay alarm output.

Maximum loading capacity of the switching contacts: 24V AC/DC – 2.5A

<table>
<thead>
<tr>
<th>Alarm message</th>
<th>Condition</th>
<th>Switching the alarm contact</th>
</tr>
</thead>
<tbody>
<tr>
<td>---</td>
<td>Power failure</td>
<td>immediately</td>
</tr>
<tr>
<td>“Temperature range”</td>
<td>Temperature tolerance range alarm (see chap. 11.1.2)</td>
<td>After configurable delay time (chap. 11.5). Factory setting: 10 minutes</td>
</tr>
<tr>
<td>“CO2 range”</td>
<td>CO₂ tolerance range alarm (see chap. 11.1.2)</td>
<td>After configurable delay time (chap. 11.5). Factory setting: 10 minutes</td>
</tr>
<tr>
<td>“O2 range”</td>
<td>O₂ tolerance range alarm (chamber with O₂ control) (see chap. 11.1.2)</td>
<td>After configurable delay time (chap. 11.5). Factory setting: 10 minutes</td>
</tr>
<tr>
<td>“Humidity range”</td>
<td>Humidity tolerance range alarm (chamber with active humidification) (see chap. 11.1.2)</td>
<td>After configurable delay time (chap. 11.5). Factory setting: 10 minutes</td>
</tr>
<tr>
<td>“Door open”</td>
<td>Chamber door open alarm (see chap. 11.1.2)</td>
<td>After configurable delay time (chap. 11.5). Factory setting: 1 minutes</td>
</tr>
<tr>
<td>“Humidity system”</td>
<td>The humidity module is defective (see chap. 11.1.2)</td>
<td>immediately</td>
</tr>
<tr>
<td>“Freshwater supply”</td>
<td>The humidity module cannot fill up (see chap. 11.1.2)</td>
<td>immediately</td>
</tr>
</tbody>
</table>

In case of a tolerance range alarm or a door open alarm, the alarm message on the controller display remains on during the alarm transmission via the zero-voltage relay outputs.

As soon as the cause of the alarm is identified and resolved, you can reset the alarm transmission via the zero-voltage relay outputs together with the alarm message in the “Active alarms” menu by pressing the Reset alarm icon.
In case of a power failure, transmission of the alarm via zero-voltage relay outputs remains active for the duration of the power failure. After power returns, contact 1 closes automatically with contact 3.

When using the APT-COM™ 4 Multi Management Software (option, chap. 18.1) for data acquisition, the alarm messages are only recorded in the protocol.

- Set the tolerance limits for limit alarms by APT-COM™ 4 separately in the AlarmCenter.

12. Temperature safety devices

12.1 Over temperature protective device (class 1)

The chamber is equipped with an internal temperature safety device, class 1 acc. to DIN 12880:2007. It serves to protect the chamber and prevents dangerous conditions caused by major defects.

If the actual temperature exceeds the nominal temperature by approx. 10 °C, the over temperature protective device permanently turns off the chamber. The user cannot restart the device again. The protective cut-off device is located internally. Only a service specialist can replace it. Therefore, please contact an authorized service provider or BINDER Service.

12.2 Overtemperature safety controller class 3.1

The chambers are regularly equipped with an electronic overtemperature safety controller (temperature safety device class 3.1 according to DIN 12880:2007). The safety controller is functionally and electrically independent of the temperature control system. If an error occurs, it performs a regulatory function.

Please observe the DGUV guidelines 213-850 on safe working in laboratories (for Germany).

The overtemperature safety controller serves to protect the chamber, its environment and the contents from exceeding the maximum permissible temperature. In the case of an error, it limits the temperature inside the chamber to the entered safety controller set-point. This condition (state of alarm) is indicated visually and additionally with an audible alert if the buzzer is enabled (chap. 11.4). The alarm persists until the chamber cools down below the configured safety controller setpoint.

- Check the setting regularly and adjust it following changes of the set-point or charge.
- The safety controller only activates after the set-point has been reached once.
- During a running sterilization (chap. 21.3) the safety controller is non-functional
12.2.1 Safety controller modes

You can select between “Limit (absolute)” and “Offset (relative)” safety controller mode

- **Limit**: Absolute maximum permitted temperature value

 This setting offers high safety as a defined temperature limit will not be exceeded. It is important to adapt the safety controller set-point after each modification of the temperature set-point. Otherwise, the limit could be too high to ensure efficient protection, or, in the opposite case, it could prevent the controller from reaching an entered set-point outside the limit range.

- **Offset**: Maximum overtemperature above any active temperature set point. The maximum temperature changes internally and automatically with every set-point change.

 This setting is recommended for program operation. It is important to check the safety controller set-point and safety controller mode occasionally, as it does not offer a fix, independent limit temperature value, which would never be exceeded.

Example: Desired temperature value: 37 °C, desired safety controller value: 39 °C.

Possible settings for this example:

<table>
<thead>
<tr>
<th>Temperature set point</th>
<th>Safety controller mode</th>
<th>Safety controller set-point</th>
</tr>
</thead>
<tbody>
<tr>
<td>37 °C</td>
<td>Limit (absolute)</td>
<td>39 °C</td>
</tr>
<tr>
<td></td>
<td>Offset (relative)</td>
<td>2 °C</td>
</tr>
</tbody>
</table>

12.2.2 Setting the safety controller

Press the **Setpoint setting** icon to access the “Setpoint” setting menu from Normal display.

- In the field “Mode” select the desired setting “Limit” or “Offset”.

- Select the corresponding field “Limit” or “Offset” according to the selected mode and enter the desired safety controller setpoint. Confirm entry with Confirm icon.
Regularly check the safety controller setting for set-point type “Limit” or “Offset”
• in Fixed value operating mode according to the entered set-point temperature value
• in program mode according to the highest temperature value of the selected temperature program
Set the safety controller set-point by approx. 2 °C above the desired temperature set-point.

After completing the settings, press the **Confirm** icon to take over the entries and exit the menu, or press the **Close** icon to exit the menu without taking over the entries.

12.2.3 Message and measures in the state of alarm

The state of alarm is indicated visually in Normal display by the alarm message “Safety controller alarm” and the screen header flashing in red color. If the buzzer is enabled (chap. 11.4) there is an additional audible alert (chap. 11.2). The alarm remains active until it is acknowledged on the controller and the inner temperature falls below the set safety controller setpoint. Then the heating is released again.

![Normal display with safety controller alarm.](image)

Press the **Alarm** icon

![List of active alarms.](image)

Press the **Reset alarm** icon.

12.2.4 Function check

Check the safety controller at appropriate intervals for its functionality. It is recommended that the authorized operating personnel should perform such a check, e.g., before starting a longer work procedure.
13. User management

13.1 Authorization levels and password protection

The available functions depend on the current authorization level “Master”, “Service”, “Admin” or “User”. The authorization levels are hierarchical: Every authorization includes all functions of the next lower level.

“Master” authorization level

- Highest authorization level, only for developers
- Extensive authorization for controller operation and configuration, outputs/inputs, alarm settings, parameter sets and operating ring display
- All passwords can be changed in the “log out” submenu (chap. 13.3).

“Service” authorization level

- Authorization level only for BINDER service
- Extensive authorization for controller operation and configuration, access to service data
- The passwords for “Service”, “Admin” and “User” authorization levels can be changed in the “log out” submenu (chap. 13.3).

“Admin” authorization level

- Expert authorization level, for the administrator
- Authorization for controller configuration and network settings and for operating those controller functions required for operating the chamber. Restricted access to service data.
- Password (factory setting): “2”.
- The passwords for “Admin” and “User” authorization levels can be changed in the “log out” submenu (chap. 13.3).

“User” authorization level

- Standard authorization level for the chamber operator
- Authorization for operating the controller functions required for operating the chamber.
- No authorization for controller configuration and network settings. The “Settings” and “Service” submenus of the main menu are not available.
- Password (factory setting): “1”
- The password for the “User” authorization level can be changed in the “log out” submenu (chap. 13.3).

As soon as a password has been assigned for an authorization level, the access to this level and the related controller functions are only available after log-in with the appropriate password.

If for an authorization level no password is assigned, the related controller functions of this level are available for every user without login.

If passwords have been assigned for all authorization levels, access to the controller functions is locked without login.
Operation after user login

At user login, the authorization level is selected and confirmed by entering the respective password.

Following user login, controller operation is available, recognizable by the open-lock icon in the header. The available controller functions correspond to the user’s authorization level.

Password protection activated for all levels: operation without user login is locked

If passwords have been assigned for all authorization levels, the controller is locked without registration of a user.

As long as no user is registered, controller operation is locked, recognizable at the closed-lock icon in the header. This requires that the user management has been activated by the assignment of passwords for the individual authorization levels.

Password protection for at least one level deactivated: operation without user login is possible

If passwords have not been assigned for all authorization levels, after turning on the chamber there are those controller functions available, which correspond to the highest authorization level without password protection.

No lock icon is shown in the display header.

User login is neither required nor possible.

To activate the password protection and user login, perform new password assignment (chap. 13.5.3).
Information window

To check the authorization level of the user currently logged-in, select in Normal display the arrow far right in the display header.

<table>
<thead>
<tr>
<th>Fixed value</th>
<th>14:19:32</th>
<th>40.0</th>
<th>40.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>°C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The information window shows date and time, the controller's free memory space and under “Authorization” the authorization level of the current user.

If passwords have been assigned for all authorization levels, a user without login (password entry) has no authorization. There are only viewing functions available.

<table>
<thead>
<tr>
<th>Fixed value</th>
<th>14:32:10</th>
<th>98%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>Tuesday, 2016/05/02</td>
<td></td>
</tr>
<tr>
<td>Authorization</td>
<td>Admin</td>
<td></td>
</tr>
<tr>
<td>Free storage</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Display when all authorization levels are password protected and no user has logged in:

No authorization level is displayed.

If passwords have been assigned only for some of the authorization levels, a user without login (password entry) has access to the functions of the highest authorization level without password protection.

<table>
<thead>
<tr>
<th>Fixed value</th>
<th>14:29:26</th>
<th>98%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>Tuesday, 2016/05/02</td>
<td></td>
</tr>
<tr>
<td>Authorization</td>
<td>Admin</td>
<td></td>
</tr>
<tr>
<td>Free storage</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Display when only some of the authorization levels are password protected (example: no protection for the “User” and “Admin” levels) and no user has logged in:

The user's effective authorization (due to lack of password protection) is shown.

Example: user with “Admin” authorization.

If passwords have been assigned for some or all of the authorization levels, user login (password entry) provides the authorization for the corresponding password-protected level.

<table>
<thead>
<tr>
<th>Fixed value</th>
<th>14:29:26</th>
<th>98%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>Tuesday, 2016/05/02</td>
<td></td>
</tr>
<tr>
<td>Authorization</td>
<td>Admin</td>
<td></td>
</tr>
<tr>
<td>Free storage</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Display when at least some of the authorization levels are password protected and a user has logged in.

The user's authorization (by password entry) is shown.

Example: user with “Admin” authorization.
13.2 Log in

Path: **Main menu > User > Log in**

Controller without a user logged-in

Controller with logged-in user

Selection of user type (example)

All selection possibilities are password protected

Controller with deactivated password

After completing the settings, press the **Confirm** icon to take over the entries and exit the menu, or press the **Close** icon to exit the menu without taking over the entries.
13.3 Log out

Path: Main menu > User > Log out

User logoff with “Admin” authorization

Controller with logged-in user

Controller without a user logged-in

13.4 User change

If the password function has been deactivated (chap.13.5.2) this function is not available.

Path: Main menu > User > User change

Controller with logged-in user

Controller without a user logged-in
13.5 Password assignment and password change

This function is not available for a user logged-in with “User” authorization.

13.5.1 Password change

A logged-in user can change the passwords of his current level and of the next lower level(s).

Example: A user with “Admin” authorization can change the passwords for the “Admin” and “User” authorization levels.

Path: Main menu > User > Password
Selection of the authorization level (example: view with “Admin” authorization)

Enter desired password. If desired, press the Change keyboard icon to access other entry windows.

In the “Keyboard switch” window you can select different keyboards to enter uppercase and lowercase letters, digits, and special characters. All types of characters can be combined within one single password.

Example: access the digit entry window

To confirm the entry, press the Confirm icon.

Repeat the password entry for confirmation (sample picture). For each character of the password, the required keyboard appears automatically. Then press the Confirm icon.
13.5.2 Deleting the password for an individual authorization level

A user logged-in with “Service” or “Admin” authorization can delete the passwords of his current level and of the next lower level(s). To do this no password is entered during a password change.

Path: Main menu > User > Password

Controller with logged-in user (e.g. with “Admin” authorization)

Select the authorization level for which the password shall be deleted.

Do NOT enter anything in the “Password” screen. Press the Confirm icon.

Do NOT enter anything in the “Confirm password” screen. Press the Confirm icon.

The password is deleted.
13.5.3 New password assignment for “service” or “admin” authorization level when the password function was deactivated

If the password protection for an authorization level has been deactivated, i.e., no password is assigned, no login for this level is possible. Therefore access to this authorization level is available without login.

If the password for the “Service” or “Admin” authorization has been deleted (chap. 13.5.2), a new password can be assigned for the current level and the next lower level(s) without user login.

Example: The password for the “Admin” authorization level was deleted, therefore every user without login has full access to the functions of the “Admin” authorization level. If access to this level shall become password protected again, the user can assign a new password for the “Admin” authorization level with the “Password” function.

Path: *Main menu > User > Password*

Controller with deactivated password for “Service” or “Admin” authorization

Select the authorization level, for which you want to assign a password.
(Example: “Admin” authorization)

![Select the authorization level](image1)

Enter the desired password. If desired, press the **Change keyboard** icon to access other entry windows.

![Enter the password](image2)

To confirm the entry, press the **Confirm** icon.

Repeat the password entry for confirmation. For each character of the password, the required keyboard appears automatically. Then press the **Confirm** icon.

![Confirm the password](image3)
13.6 Activation code

Certain functions of the controller can be unlocked with a previously generated activation code.

The activation code enables access to functions available only in the “Service” authorization level by users without a “Service” authorization. Such functions include e.g., adjustment or extended configurations.

The activation code is available in authorization levels.
Path: Main menu > User > Activation code

![Activation code menu](image)

Select the first of the four entry fields.

![Activation code entry window](image)
Enter the first four characters of the activation code and press the Confirm icon.

Select the next of the four entry fields and proceed accordingly until the entire code has been entered.

The available functions are indicated by marked checkboxes.
Example: Extended configurations available.

Under “Expiration date” the date of expiry of the code is displayed.
14. General controller settings

Most of the general settings can be accessed in the “Settings” submenu, which is available for users with “Service” or “Admin” authorization level. It serves to enter date and time, select the language for the controller menus and the desired temperature unit and to configure the controller’s communication functions.

14.1 Selecting the controller’s menu language

The MB2 program controller communicates by a menu guide using real words in German, English, French, Spanish, and Italian.

Path: Main menu > Settings > Chamber

Return to Normal display with the Back icon to take over the entries.

14.2 Setting date and time

Following start-up of the chamber after language selection:

Select the time zone and configure the daylight saving time switch.
Or later:

Path: **Main menu > Settings > Date and time**

“Date and time” submenu.
Select the field “Date / time”.

“Date and time” entry menu.
Enter date and time and press the **Confirm** icon.

“Date and time” submenu.
In the field “Daylight saving time switch” select the desired setting “Automatic” or “Inactive”.

“Date and time” submenu.
Select the desired time zone and press the **Confirm** icon.

“Date and time” submenu.
Select the desired start of the daylight saving time.

“Date and time” submenu.
Select the desired end of the daylight saving time and press the **Confirm** icon.

After completing the settings, press the **Confirm** icon to take over the entries and exit the menu, or press the **Close** icon to exit the menu without taking over the entries.
14.3Selecting the temperature unit

Following start-up of the chamber:

Or later:
Path: Main menu > Settings > Chamber

Start-up
Temperature unit Degrees Celsius
Time zone UTC+1h (CET)
Daylight saving time switch Automatic
Start of daylight saving time
End of daylight saving time
Language query after restart Yes

Select the desired temperature unit and press the Confirm icon.

Change of the temperature unit between °C and °F.
If the unit is changed, all values are converted accordingly

\[
C = \text{degree Celsius} \quad 0 \degree C = 31 \degree F \\
F = \text{degree Fahrenheit} \quad 100 \degree C = 212 \degree F \\
\text{Conversion:} \quad [\text{value in °F}] = [\text{value in °C}] \times 1,8 + 32
\]

14.4Display configuration

14.4.1Adapting the display parameters
This function serves to configure parameters like display brightness and operating times.
Path: Main menu > Settings > Display > Display

“Display” submenu.
• Select the field “Brightness”.
 Move the grey slide to the left or right to define the brightness of the display
 • left = darker (minimum value: 0)
 • right = brighter (maximum value: 100)
 Press the Confirm icon.

• Select the field “Wait time for screen saver” and enter the desired waiting time for the screen saver in seconds. Setting range: 10 sec up to 32767 sec. During the waiting time the display is off. Confirm entry with Confirm icon.

• In the field “Activate continuous operation” select the desired setting “Yes” or “No”.

• Select the field “Begin continuous operation” (possible only if continuous operation is activated) and enter the time with the arrow keys. Confirm entry with Confirm icon.

• Select the field “End continuous operation. (only possible if continuous operation is activated) and enter the time with the arrow keys. Confirm entry with Confirm icon.

After completing the settings, press the Confirm icon to take over the entries and exit the menu, or press the Close icon to exit the menu without taking over the entries.

14.4.2 Touchscreen calibration

This function serves to optimize the display for the user’s individual angular perspective.

Path: Main menu > Calibrate touchscreen

Normal display.

Select “Calibrate touchscreen” and follow the instructions on the display.

You need to touch all four corners of the touchscreen to calibrate it. Appropriate boxes appear successively in each corner.

The waiting icon shows how much time there is left to touch the currently activated box. If the box is not touched within this period, calibration is aborted and the display changes to Normal display.

After completing the calibration, i.e., touching all four boxes, the display changes to Normal display.
14.5 Network and communication

For these settings at least the “Admin” authorization level is required.

14.5.1 Serial RS485 interface (available via BINDER INDIVIDUAL Customized Solutions)

This menu allows to configure the communication parameters of the RS485 interface.

The device address is required to recognize chambers with this interface type in a network, e.g. when connecting it to the optional BINDER APT-COM™ 4 Multi Management Software (chap. 18.1). In this case do not change the other parameters.

Path: **Main menu > Settings > Serial interfaces**

- Select the desired setting in the field “Baud rate”.
- Select the desired setting in the field “Data format”.
- Select the field “Minimum response time” and enter the desired minimum response time. Confirm entry with Confirm icon.
- Select the field “Device address” and enter the device adress. Factory setting is “1”. Confirm entry with Confirm icon.

After completing the settings, press the Confirm icon to take over the entries and exit the menu, or press the Close icon to exit the menu without taking over the entries.
14.5.2 Ethernet

14.5.2.1 Configuration

Path: Main menu > Settings > Ethernet

- In the field “IP address assignment” select the desired setting “Automatic (DHCP)” or “Manual”.

 With selection “Manual” you can enter the IP-address, the subnet mask and the standard gateway manually.

- Select “DNS device name” and enter the DNS device name. Confirm entry with Confirm icon.

- In the field “DNS server address” select the desired setting “Automatic” or “Manual”.

 With selection „Manual“ you can enter the DNS server address manually.

After completing the settings, press the Confirm icon to take over the entries and exit the menu, or press the Close icon to exit the menu without taking over the entries.
14.5.2.2 Display of MAC address

Path: **Main menu > Device info > Ethernet**

![“Ethernet” submenu (example).]

14.5.3 Web server

This controller menu serves to configure the web server. Then you can enter the chamber’s IP-address in the Internet. The IP address is available via **Chamber information > Ethernet**. The BINDER web server opens. Enter the user name and password which have been assigned for the web server in the controller menu. This enables online access to the controller display, to see e.g., the event list or error messages. In this view no settings can be changed.

Path: **Main menu > Settings > Web server**

![“Webserver” submenu.]

- In the field “Password active” select the desired setting “Yes” or “No”.

- Select the field “User name” and enter the desired user name. Confirm entry with Confirm icon.

- Select the field “Password” and enter the desired password. Confirm entry with the **Confirm** icon.

- Select the field “Automatic log out after” and enter the time in minutes after which the webserver shall log out automatically. Setting range: 0 min to 65535 min. Confirm entry with **Confirm** icon.

After completing the settings, press the **Confirm** icon to take over the entries and exit the menu, or press the **Close** icon to exit the menu without taking over the entries.
14.5.4 E-Mail

As soon as an alarm was triggered, an e-mail is sent to the configured e-mail address.

Path: Main menu > Settings > Email

E-mail address entry:

“Email” submenu.
Select the desired e-mail address field and enter the e-mail address. You can use the Keyboard change icon for entry. Confirm entry with Confirm icon.

E-mail server settings:

“Email” submenu.
Select the field “Email server” to access the settings

- In the field “Authentication” select the desired setting “None” or “SMTP auth”.
 With the setting “SMTP auth”, you can enter a password under “Email password”.

- Select the field “Email user name” and enter the desired user name. Confirm entry with Confirm icon.
- Select the field “SMTP mail server URL” and enter the SMPT mail server URL. Confirm entry with Confirm icon.
- Select the field “SMTP port number” and enter the desired port number. Standard setting: “25”. Confirm entry with Confirm icon.
- Select the field “Email sender” and enter the desired Email sender. Confirm entry with Confirm icon.

After completing the settings, press the Confirm icon to take over the entries and exit the menu, or press the Close icon to exit the menu without taking over the entries.
14.6 USB menu: Data transfer via USB interface

The USB port is located in the instrument box.

When you insert a USB-stick, the “USB” menu opens.

Depending on the user’s authorization level, different functions (highlighted in black) are available for the logged-in user.

<table>
<thead>
<tr>
<th>Available functions with “User” authorization level</th>
<th>Available functions with “Admin” authorization level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function</td>
<td>Explanation</td>
</tr>
<tr>
<td>Log-out USB stick</td>
<td>Log-out USB stick before pulling it</td>
</tr>
<tr>
<td>Export new chart recorder data (*.DAT)</td>
<td>Export chart recorder data, which have been added since last export, in .dat format</td>
</tr>
<tr>
<td>Export all chart recorder data (*.DAT)</td>
<td>Export all chart recorder data in .dat format</td>
</tr>
<tr>
<td>Export all chart recorder data (*.csv)</td>
<td>Export all chart recorder data in .csv format</td>
</tr>
<tr>
<td>Import configuration and programs</td>
<td>Import configuration and timer / time / week programs</td>
</tr>
<tr>
<td>Export configuration and programs</td>
<td>Export configuration and timer / time / week programs</td>
</tr>
<tr>
<td>Import programs</td>
<td>Import timer / time / week programs</td>
</tr>
<tr>
<td>Export service data</td>
<td>Export service data</td>
</tr>
<tr>
<td>Software update</td>
<td>Controller firmware update</td>
</tr>
</tbody>
</table>
15. General information

15.1 Service contact page

Path: Main menu > Contact

15.2 Current operating parameters

Press the Information icon to access the “Info” menu from Normal display.

- Select “Program operation” to see information on a currently running program.
- Select “Setpoints” to see information on the entered setpoints and operation lines.
- Select “Actual values” to see information on the current actual values.
- Select “Safety controller” to see information on the safety controller status.
15.3 Event list

The “Event list” displays status information and errors of the current day. It enables to view the last 100 events or defective conditions of the chamber.

Press the Event list icon to access the event list from Normal display.

Press the Update icon to update the event list.

Attention: Following a modification of the language setting (chap. 14.1) or the storage interval of the chart recorder (chap. 16.2) the Event list is cleared.

15.4 Technical chamber information

Path: Main menu > Device info

<table>
<thead>
<tr>
<th>Main</th>
<th>Device info</th>
</tr>
</thead>
<tbody>
<tr>
<td>i General</td>
<td></td>
</tr>
<tr>
<td>vl Versions</td>
<td></td>
</tr>
<tr>
<td>✂ In-Outputs</td>
<td></td>
</tr>
<tr>
<td>Modbus inputs</td>
<td></td>
</tr>
<tr>
<td>Ethernet</td>
<td></td>
</tr>
</tbody>
</table>

Chamber name and setup	
Versions of CPU, I/O module and safety controller	for BINDER Service
Information on digital and analog inputs and outputs and phase angle outputs	for BINDER Service
Information on modbus analog and digital inputs	for BINDER Service
Information on Ethernet connection, MAC address display	chap. 14.5.2

Back to main menu
16. Chart recorder display

This view offers graphic representation of the measurement course. Data representation imitates a chart recorder and allows recalling any set of measured data at any point of time taken from the recorded period.

16.1 Views

Press the Change view icon to access the pen recorder display.

16.1.1 Show and hide legend

Press the Show legend icon to display the legend on the right side of the display.

Legend shown on the right side of the display

16.1.2 Switch between legend pages

Press the Switch legend icon to switch between the legend pages.

Switching between the legend pages
16.1.3 Show and hide specific indications

Press the **Show indications** icon to display the indication “Door open” (B2).

![Indication “Door open” displayed.](image)

16.1.4 History display

Press the **History display** icon to change to the history display.

![History display.](image)

History display.

The chart recorder is paused. Data recording continues in the background.

Move the central red line by tapping and holding to the desired position.

The legend at the right side shows the values of the current line position.

Then further icons appear:
History display: Curve selection

Press the **Curve selection** icon to access the “Curve selection” submenu.

![Curve selection submenu](image)

“Curve selection” submenu.
Select the curves to be displayed by checking the checkbox of the corresponding parameter. Press the **Confirm** icon.

History display: Search the required instant

Press the **Search** icon to access the “Search” submenu.

![Search submenu](image)

“Search” submenu.
Select the required instant by entering its date and time and press the **Confirm** icon.
History display: Zoom function

Press the **Zoom** icon to access the “Zoom” submenu.

“Zoom” submenu.
Select the zoom factor and press the **Confirm** icon

History display: Show and hide scroll buttons to scroll to an instant

Press the **Show scroll buttons** icon to access the “Page selection” submenu.

“Page selection” submenu.
Scroll buttons are shown on the left and on the right. Use them to move along the timeline.

Press the **Change view** icon to return from the pen recorder display to Normal Display.
16.2 Setting the parameters

This menu allows setting the storage interval, the type of values to be shown and the scaling of the temperature and humidity charts.

Path: Main menu > Settings > Measurement chart

- Select the field “Storage interval” and enter the desired storage interval. Confirm entry with Confirm icon.

 The available presentation depends on the pre-selected storage rate. Factory setting: 60 seconds. This means the higher the storage rate, the more precisely but shorter the data representation will be.

- In the field “Storage values” select the desired value type to be displayed.

- For scaling the representation select the desired minimum and maximum temperature or humidity value and enter the desired values. Confirm each entry with Confirm icon.

 Display ranges:
 - Temperature: 0 °C up to 200 °C
 - CO₂: 0 Vol.-% up to 100% Vol.-%
 - O₂: 0 Vol.-% up to 100% Vol.-%
 - Humidity: 0% r.h. up to 100% r.h.

Setting the storage rate or rescaling (minimum and/or maximum) will clear the measured-value memory and the event list.

NOTICE

Danger of information loss when setting the storage rate or rescaling.
Data loss of measured-value memory and event list.
 Change the storage rate or scaling ONLY if the previously registered data is no longer needed.

After completing the settings, press the Confirm icon to take over the entries and exit the menu, or press the Close icon to exit the menu without taking over the entries.
17. Humidification system (chamber with active humidification)

The chamber is equipped with a capacitive humidity sensor. This results in a control accuracy of up to +/- 3 % r.h. of the set point.

You can turn humidity control on or off in the controller (chap. 6.7).

With humidity control turned off, the humidification module cools down. After activation it will take up to 10 minutes until the humidification function is fully available again. This setting is required when operating the chamber with the Permadry water pan in order to avoid humidity alarms.

Heat emission of electrical devices connected inside the chamber may modify the temperature and humidity range.

The chambers are equipped with a door heating system to avoid condensation in the door area.

17.1 Function of the humidifying system

The humidifying system is located in the humidity generation module. In a cylindrical container with a volume of approx. 0.07 liters an electrical resistance heating evaporates water. The water content is kept close to the boiling point, and thus steam can be immediately generated in sufficient quantity for rapid humidity increases or for compensation of humidity losses, e.g. by door openings.

Freshwater is supplied by manually filling a freshwater bag. A peristaltic pump transports the water to the humidification module via a silicone tube.

In order to ensure accurate humidifying, observe the following points with regard to the freshwater supply:

- Water type: deionized (demineralized) water
- To ensure humidification during 24 hours even at high humidity set-points, we recommend filling the freshwater bag at the end of each day.
- Water intake temperature NOT below +5 °C / 41 °F and not exceeding 40 °C / 104 °F.

BINDER GmbH is NOT responsible for the water quality provided by the customer. Any problems and malfunctions that might arise following use of water of deviating quality is excluded from liability by BINDER GmbH.

The humidity system is functional only if the freshwater bag is sufficiently filled. Check the filling level daily. The water reserve is sufficient for one up to two weeks, depending on the humidity demand (set humidity set-point, number of door openings).

For error indications concerning water supply and humidity system, see chap. 11 and 22.6.

When entering a humidity setpoint value > 90 % r.h. a message window appears, indicating that condensation is possible. Press the Confirm icon.
17.2 Function of the dehumidifying system

To reduce the humidity, ambient air is sucked in through a gas fine filter (sterile filter). As a result, the air in the interior is diluted with the air from outside. The air tube for inlet of the ambient air is located in the upper right corner in the recess for the freshwater bag. We recommend replacing the sterile filter on this tube about once a month. To replace the sterile filter, see chap. 22.2.3.

18. Options

18.1 APT-COM™ 4 Multi Management Software (option)

The chamber is regularly equipped with an Ethernet interface (5) that can connect the BINDER APT-COM™ 4 Multi Management Software. The MAC Address is indicated in the “Device info” controller menu (chap. 14.5.2.2). The actual values of temperature, CO₂, O₂ (chamber with O₂ control) and humidity (chamber with active humidification) are given at adjustable intervals. Programming can be performed graphically via PC. Up to 100 chambers can be cross-linked. For further information on networking please refer to the operating manual of the BINDER communication software APT-COM™ 4.

18.2 Silicone access ports 30 mm / 1.18 in, closable from both sides with silicon plugs (option)

Figure 30: Positions of the optional silicon access ports left (a), rear (b), and right (c)

A warning sticker is located above each access port on the outside of the incubator.
When operating a chamber with silicon access ports, both silicon plugs must tightly close the access
ports. If the plugs are inserted in a not-gastight manner, or if plugs are missing, CO₂ / O₂ / N₂ gas
(chamber with O₂ control) may escape into the environment. The CO₂ control and the O₂ control
(chamber with O₂ control) only turn off when the chamber door is opened.

<table>
<thead>
<tr>
<th>DANGER</th>
</tr>
</thead>
</table>
| Danger of suffocation and poisoning by high concentration of CO₂ (> 4 Vol.-%).
Death by suffocation. |
| ➢ Tightly close each access port with two plugs during operation. |

<table>
<thead>
<tr>
<th>DANGER</th>
</tr>
</thead>
</table>
| Danger of fire and explosion through contact of combustible materials with O₂ with high concentration of O₂ (> 21 % O₂).
Serious injury or death from burns and / or explosion pressure. |
| ➢ Tightly close each access port with two plugs during operation. |

18.3 Quick sample access (option)

The quick sample access option provides easy access to the sample chamber through a small window in the glass inner door. This is a useful feature in applications with short incubation times. The window measures 13 x 25 cm and is located in the bottom corner of the glass inner door.

This quick method of accessing samples is available for both the standard door hinge on the right and the door hinge on the left.

Figure 31: Glass door (detail, example door hinge on the right) with Quick sample access option
18.4 Interior socket 230V (option, available via BINDER INDIVIDUAL Customized Solutions)

The interior socket is activated and deactivated in the controller via the switching state of an operation line (chap. 7.3, 9.7.3, 10.6.5). When the interior socket is activated, the notification “Interior socket” is shown highlighted in black next to the information icon in the screen header in Normal display (chap. 11.1.1)

The interior socket (G) is located at the upper left corner on the rear wall of the inner chamber. It is closed with a waterproof lid. The interior socket is suitable to supply electrical devices inside the chamber with 230V AC voltage.

Figure 32: Position of the interior socket 230 V

(G) Interior socket

The maximum head load must not exceed a capacity of 20 W.

NOTICE

- Danger of damage when exceeding the setpoint temperature.
- Damage to the cultures.
 - Do NOT exceed the maximum head load of 20 W.
 - Do NOT connect equipment with a nominal capacity > 20 W.

Heat emission of electrical devices connected inside the CO₂ incubator may modify the temperature range.

The maximum load must not exceed 3 Amp.

DANGER

- Electrical hazard through overload of contacts.
- Deadly electric shock. Damage to contacts and connection socket.
 - Do NOT exceed the maximum load of 3 A.
 - Do NOT connect any devices with a nominal current > 3 A.
The interior socket's voltage is turned off at the chamber controller via operation line (chap. 7.3, 9.7.3, 10.6.5).

Turning off the chamber at the main power switch also switches the interior socket voltage-free.

Electrical data socket and plug: IP system of protection 65, 230 V 1N ~ 50-60 Hz

NOTICE

Risk of short circuit caused by penetration of moisture into the socket.

Damage to the chamber.

- Use the supplied plug only (IP protection type 65).
- If the socket is not used, close it with the waterproof lid.

When inserting a heat load into the inner chamber by introducing electrical devices such as shakers or rollers, the ambient temperature of the incubator must not exceed 25 °C / 77 °F. Otherwise, temperature control to 37 °C / 98.6°F cannot be assured. When operating electrical devices inside the incubator, always check the desired incubation temperature **before** introducing any cells.

NOTICE

Danger of excessive inner temperature > 37 °C / 98.6 °F when operating electrical devices inside the incubator.

Damage to the cell cultures.

- Make sure that the ambient temperature is ≤ 25 °C / 77 °F when operating electrical devices inside the incubator.
- Check the temperature observation before introducing any cells.

18.5 Analog outputs for temperature and CO₂ (option)

With this option, the chamber is equipped with analog outputs 4-20 mA for temperature and CO₂. These outputs allow transmitting data to external data registration systems or devices.

The connection is realized as a DIN socket (4) on the chamber rear. A suitable DIN plug is enclosed.

ANALOG OUTPUT 4-20 mA DC

- PIN 1: Temperature +
- PIN 2: Temperature -
- PIN 3: CO₂ +
- PIN 4: CO₂ -

CO₂ range: 0 vol.-% up to 20 vol.-%
Temperature range: 0 °C / 32°F up to +200 °C / 392°F

Figure 35: Pin configuration of the DIN socket (4) on the chamber rear
18.6 Data Logger kits (option)

BINDER Data Logger Kits offer an independent long-term measuring system for temperature and humidity, available for different temperature ranges. According to the selected kit, the Data Logger can measure and record also the ambient temperature and humidity values via a second multi-function sensor.

BINDER Data Loggers are equipped with a keyboard and a large LCD display, alarm functions and a real-time function. Measurement data are recorded in the Data Logger and can be read out after the measurement via the RS232 interface of the Data Logger. It offers a programmable measuring interval and permits storing up to 64000 measuring values. Reading out is done with the Data Logger evaluation software. You can give out a combined alarm and status protocol directly to a serial printer.

Data Logger Kit T 220: Sensor for chamber temperature: Temperature range -90 °C / -130 °F up to 220 °C / 428 °F.

Data Logger Kit TH 70: Multi-function sensor for chamber temperature and humidity: Temperature range -40 °C / -40 °F up to 70 °C / 158 °F, humidity range 0% r.h. up to 100% r.h.

Data Logger Kit TH 70/70: Multi-function sensor for chamber temperature and humidity: Temperature range -40 °C / -40 °F up to 70 °C / 158 °F, humidity range 0% r.h. up to 100% r.h. Multi-function sensor for ambient temperature and humidity: Temperature range -40 °C / -40 °F up to 70 °C / 158 °F, humidity range 0% r.h. up to 100% r.h.

For detailed information on installation and operation of the BINDER Data Logger, please refer to the mounting instructions Art. No. 7001-0204 and to the original user manual of the manufacturer, supplied with the data logger.

18.7 Access port for extra-low voltage (option)

The access port (B) (8-pin) for extra-low voltage (ELV) consists of a LEMO socket (which can be covered) and a LEMO connector. It is suitable to connect two electrical devices, one inside and one outside the incubator. You can use it e.g. for devices with a monitoring and control part remaining outside the incubator, whereas its mechanical component like roller or shaker systems is located inside the chamber.

![Figure 36: Position of the access port for extra-low voltage](image-url)
Maximum power rating 24V AC/DC 2Amp.

DANGER

Electrical hazard through overload of contacts. Deadly electric shock. Damage to contacts and connection socket.

- Do NOT exceed the maximum load of 24V AC/DC 2Amp.
- Do NOT connect any devices with a nominal current > 2 Amp.
- Do NOT connect any devices with a nominal voltage > 24 V DC.

On chamber rear:
Exterior Lemo socket (2) on the rear of the chamber

Interior:
LEMO socket (B) located at the upper right corner of the rear wall of the inner chamber

Supplied LEMO connector:
on external and internal side

![Lemo socket diagram]

Figure 37: Pin allocation (front view) of the Lemo sockets and plug

When introducing a heat load into the inner chamber by inserting electrical devices like shakers or rollers, the ambient temperature of the incubator must not exceed 25 °C / 77°F. Otherwise, temperature control to 37 °C / 98.6°F cannot be assured. When operating electrical devices inside the incubator, always check the desired incubation temperature **before** introducing in any cells.

NOTICE

Danger of excessive inner temperature > 37 °C / 98.6 °F when operating electrical devices inside the incubator. Damage to the cell cultures.

- Make sure that the ambient temperature is ≤ 25 °C / 77 °F when operating electrical devices inside the incubator.
- Check the temperature observation before introducing any cells.

18.8 **BINDER Gas Supply Service – External bottle changer for CO₂, N₂ or O₂ (option)**

The external bottle changer permits automatic switching to a second gas cylinder as soon as the first cylinder is empty. It can be used for a maximum of two CB chambers.

Instructions 7001-0196 delivered with the external bottle changer (Art. no. 8012-0408) describe its installation and operation.
18.9 Stands

18.9.1 Stacking stand (option)

We recommend not stacking the incubators directly on top of one another in order to avoid transmission of shocks and vibrations from one chamber to the other. This could happen e.g. while opening or closing the door, cleaning, charging and discharging the chamber. BINDER offers stable, vibration-free stands with castors (2 lockable by brakes) for the safe stacking of two chambers.

The stacking stand ensures that the set incubation parameters are precisely maintained also during sterilization of the other chamber in the same stacking stand (chap. 21.3) by thermal decoupling.

Using the stacking stand offers more advantages: You can pull the lower chamber forward separately (e.g., for access to the rear), and not have to place it directly on the floor (important for sanitary purpose).

The mounting instructions 7001-0194 delivered with the stacking stand describe its installation (Art. No. 9051-0020 for CB / CB-UL 170, Art. No. 9051-0023 for CB / CB-UL 260).

18.9.2 Base on castors (option)

In order to obtain easy access to the chamber and to avoid contamination of the chamber caused by soil pollution, BINDER recommends using the base on castors.

18.10 Water supply sets (optional for chambers with active humidification)

18.10.1 Tubular bag set (option)

For the water supply via freshwater bag (standard), a set with 12 tubular bags (annual demand) is available. The bag set includes all necessary connecting parts.

For details please refer to chap. 4.5.2.

18.10.2 Humidification water set (option)

For the optional water supply via prefilled water bottle, a humidification water set with 10 prefilled one-liter bottles (annual demand) is available. It includes all necessary connecting parts. For details please refer to chap. 4.5.3.

By using the humidification water set you will achieve unsurpassed contamination safety of your samples in the BINDER CB CO₂ incubator with active humidification.

18.10.3 Water container set (option)

The fresh water can, which is placed in an included magnetic can holder on the left chamber side, serves to supply one or several chambers with freshwater for humidification.

The water container set includes all necessary connecting parts. For details please refer to chap. 4.5.4.
19. Reference measurements

Reference measurements of the temperature, CO₂, O₂ (chamber with O₂ control), and humidity can be performed via the silicone measuring port (N) located on the inner glass door. Reference temperature measurements always take place under equilibrated conditions with both doors closed.

19.1 CO₂ reference measuring

There are three possibilities to perform CO₂ test measurements between the recommended annual maintenance procedures. To test the CO₂ concentration inside an incubator, see chapters 19.1.1 to 19.1.3.

19.1.1 Measuring CO₂ concentration indirectly via the pH of the cell medium

By using the indirect determination of CO₂ concentration via the pH-value of the nutrient, it is possible to check the CO₂ concentration inside the chamber. This is a simple method to test the correct CO₂ concentration without any special CO₂ measuring equipment. You need only use an accurate pH indicator or a pH-measuring electrode, which are standard equipment in cell culture laboratories.

This method is based on the acid base equilibrium of the buffer system in the culture media. NaHCO₃ buffers the common media. From the pH value of the medium, it is possible to conclude its CO₂ concentration. Figure 38 shows the relationship between CO₂ concentration in vol.-% and the pH of different NaHCO₃ buffered media.

Recommended procedure:

- Incubate an empty sample with medium for 1/2 day under the same conditions as the cells. You can perform the incubation in a cell culture cylinder or in a 50 ml Falcon tube with open lid.

- After gassing, remove the empty sample from the incubator and within 5 minutes measure the pH-value with a glass electrode.

 During the measurement, the medium should have the least possible surface contact with the ambient air, so that the CO₂ can evaporate only slightly. A significant downward movement will happen only after 5 minutes, permitting sufficient time for measurement.

- In addition, you can of course use pH-test strips (pH range 6 to 8, not bleeding).

These test systems are not suitable for calibrating the BINDER sensor system.
Figure 38: Value pH of NaHCO₃ buffered media as a function of the CO₂ concentration:

Example: If a pH of 7.2 is measured in a medium buffered with 2.20 g NaHCO₃ per liter, there must be 8 vol.-% CO₂ surrounding this medium.

19.1.2 Measuring CO₂ directly via chemical indicator tubes

This is a common "do-it-yourself" test for many users. A chemical color reaction in a glass tube shows the CO₂ concentration. A standardized volume of air from inside the incubator has to be suctioned through this glass tube to get a quantitative test result. Therefore, use a special hand pump with a standardized suction volume.

Procedure (example):
All the necessary equipment must be supplied by one manufacturer only and in a defined test system.
Note: These test systems are not very accurate. A typical accuracy is around 10 % of the full-scale value.

These test systems are not suitable for calibrating the BINDER sensor system.

19.1.3 Measuring CO₂ directly with an electronic infrared measuring device

Another possible way of measuring the CO₂ concentration is by electronic sensor systems. Portable measuring devices are suitable for measuring temperature and CO₂ concentration and can be used both for reference measurements in certified laboratories, and for service purposes.

19.2 Temperature reference measurement

When performing a temperature reference measurement using an electronic measuring, and temperature display device, it is important to use a device traceable to an acknowledged standards/calibration institution (DKD, PTB for Germany) with a valid calibration certificate.

Note: The cable of the sensor must be thin enough to lay it over the door gasket of the incubator without causing any leakages.
20. Avoiding microbial contamination

The main types of microbial contaminants in cell and tissue culture are bacteria, fungi, yeast, mycoplasma, and viruses. This chapter gives an overview of potential sources of contamination and precautions and measures to eliminate them.

20.1 Cells and media

- Primary cultures from the original tissue
- Cells / cell lines from unknown sources or from cell banks: Use only cells of known and tested origin. Monitoring and routine screening of new cultures.
- Media and sera: Use only sera of known and tested origin (mycoplasma free, e.g., UV or γ radiated).
- Virus suspensions, antibody solutions etc. Use only reagents of known and tested origin.
- Laboratory instruments, media and reagents that were exposed to possible contaminated cultures must be sterilized / autoclaved / disposed.
- Antibiotics in the cell culture media may prevent bacteria detection: Use antibiotics selectively and economically.

20.2 Laboratory conditions / equipment around the incubator

Possible sources of contamination in the cell culture lab are airborne germs, lab equipment, building features, and the lab personnel.

- Keep pipettes and instruments sterile after autoclaving.
- Bio safety cabinets (laminar air flow) should have a minimum of items apart from aspirator tube and burner. Items shall be positioned within easy reach and separate from each other. Disinfect surfaces with an alcohol-based disinfectant before and after use, clean the space underneath the bench, and carry out regular sterility tests of the filters.
- Regular cleaning / disinfection of laboratory equipment such as a centrifuge, microscope, water bath, refrigerator, and telephone.
- No equipment should be placed on the floor.
- Rough or humid walls are not suitable.
- Identify leaking doors and windows and make them airtight.
- Use air conditioning with special filters.
- Reduce the number of personnel and their movements in the lab by careful positioning all relevant equipment. For practical reasons, install the chamber close to the laminar air flow bench.
- Regular microbiological monitoring of the cell culture laboratory.

20.3 Working and behavior in the lab

Sources of contamination are often the laboratory personnel themselves (surface germs, oral flora droplet transfer) and handling the equipment and cultures. We recommend staff training in aseptic techniques, laboratory safety and good laboratory practice (GLP).

Examples of general rules to reduce the contamination risks

- Reduce hand germ count (wash hands with antimicrobial soap, dry with paper tissues, and rub dry hands with alcohol-based solution).
- Wear appropriate clothing (work coat, shoes, face mask)
- Keep as few personnel as possible in the cell culture lab.
Examples of sterile working method

- Work "clean-to-dirty", i.e., handle confirmed uncontaminated cells first, unknown or untested cells next, and lastly, if necessary, cells suspected to be contaminated.
- Perform daily microscopic observations of cultures and specific tests for the bacteria and fungi as part of a controlled routine. Test cultures for sterility before starting work.
- Keep working surfaces clean. Immediately wipe spilled liquids with alcohol solutions.
- No mouth contact on pipettes.
- Never work on top of open sterile containers.

20.4 Chamber design and equipment of the CO₂ incubator

The design concepts behind the CO₂ incubator considerably reduce the risk of contamination. Among them are:

Even surfaces for easy manual cleaning

- The inner surfaces are smooth and therefore easy to clean. The inner chamber is deep-drawn from a single piece, polished (suitable for pharmaceutical work) and has no welds or inaccessible corners. The hinges and the seal of the inner glass door are glued from the outside, which also aids cleaning of the inner chamber.

Removable parts for cleaning and autoclaving

- The shelves are easily removed without screws. It is possible to autoclave the shelves. But this is generally not necessary because they can remain inside the chamber during sterilization.

Door gasket

- The inner door gasket is removable and autoclavable.

Gas fine filter

- The incoming gas used in the operation passes through a fine filter (aseptic filter, filtration efficiency 99.99 %, particle size 0.45 µm) with a high filtration efficiency, which can also filter the smallest particles.

CO₂ measuring system in the inner chamber

- The CO₂ sensor can be hot-air sterilized inside the chamber.

O₂ measuring system in the inner chamber (chamber with O₂ control)

- The O₂ sensor can be hot-air sterilized inside the chamber.

Humidity measuring system in the inner chamber (chamber with active humidification)

- The humidity sensor can be hot-air sterilized inside the chamber.

Condensation prevention

- Condensation in the inner chamber represents a particular risk of contamination. The Permadry™ system developed by BINDER is an effective and easy way to ensure high humidity (≥95 % r.h.) inside the chamber without any condensation forming on the inner surfaces.

Hot air sterilization at 180 °C / 356 °F

- The heating system of the CO₂ incubator permits hot-air auto-sterilization at a setpoint of 187.5 °C / 369.5 °F. Thus, a temperature of 180 °C / 356 °F is maintained for at least 30 minutes on all internal surfaces, resulting in sterilization of the entire inner chamber. Therefore, this procedure meets all international guidelines regarding hot air sterilization, e.g. AAMI ST63, DIN 58947, European Pharmacopoeia.
20.5 Handling the CO₂ incubator

Any manipulation of the CO₂ incubator involves some contamination risks, from installation to opening the doors and regular cleaning.

Installation away from sources of contamination
- Do not place the chamber on the floor or close to windows and doors. Use the optional stand, if appropriate.

Reduce the periods in which the door is open
- Do not open the door too frequently.
- Placing items in order inside the chamber results in shorter door opening times.

Permadry™ water pan
- Fill the outer pan with distilled, sterilized water (chap. 4.2). Never use ion exchange water; ion exchangers are propagation sites for bacteria.
- Clean and refill the pans 2 to 3 times a week. For evacuation, remove the Permadry™ water pan. It is autoclavable.
- If desired, you can add microbiologically inhibiting substances as copper chips, copper sulfate or ethylene diamine tetra-vinegar acid (EDTA) in a concentration of 1 to 5 mmol/l.

Avoiding condensation caused by ambient conditions
Ambient room conditions have an effect on condensation inside the chamber, which can be caused by insufficient wall clearances, preventing even dissipation of heat, air movement or direct sunlight. If the temperature distribution inside the chamber becomes uneven, condensation may form on the cooler surfaces.
- Maintain distances from the wall: rear 100 mm / 3.94 in, sides 50 mm / 1.97 in
- Do not place the chamber in front of a window. No direct sunlight. No air movement.
- Permissible ambient temperature range for operation: +18 °C / 64.4°F to +30 °C / 86°F.
 Ideal ambient temperature: by at least 7 °C / 12.6 °F below the intended working temperature. E.g., working temperature 37 °C / 98.6 °F = ambient temperature 30 °C / 86 °F and less.
- The chamber should be calibrated / precisely adjusted.
- Let BINDER Service adjust the setting of the door heating in reaction to critical ambient conditions.

Regular cleaning, decontamination and sterilization
- Clean the shelves, glass door, gaskets, and inner chamber weekly (for cleaning see chap. 21.1, for decontamination see chap. 21.2. You can clean the shelves in a laboratory dishwasher and, if needed, individually autoclave them.
- Regularly use the hot air sterilization function (chap. 21.3) following cleaning. The shelves and the emptied water pan can remain inside the chamber during this operation.
- Have replaced the CO₂ sterile filter (gas fine filter) once or twice a year.

What to do in case of contamination?
- Throw away / autoclave contaminated cultures.
- Carefully inspect cultures that seem to be uncontaminated.
- Clean the chamber as described. Wipe the inner chamber and the doors with a disinfectant and allow drying. Autoclave the shelves. Empty the water pan and autoclave it.
- Perform a hot air sterilization.
21. Cleaning, decontamination / disinfection, and sterilization

Clean the chamber after each use in order to prevent potential corrosion damage by ingredients of the charging material.

Prior to renewed startup, allow the chamber to completely dry after all cleaning and decontamination measures.

DANGER

Electrical hazard by water entering the chamber.
Deadly electric shock.

- Do NOT spill water or cleaning agents over the inner and outer chamber surfaces.
- Do NOT put ANY cleaning aids (cloth or brush) into slots or openings on the chamber.
- Before cleaning, turn off the chamber at the main power switch and disconnect the power plug. Let the chamber cool down to ambient temperature.
- Completely dry the chamber before turning it on again.

DANGER

Danger of explosion due to cleaning agents on hot surfaces.
Serious injury or death from burns and / or explosion pressure.

- Before cleaning, turn off the chamber at the main power switch and disconnect the power plug.
- Before cleaning, let the chamber cool down to ambient temperature.
- Completely dry the chamber before turning it on again.

21.1 Cleaning

Disconnect the chamber from the power supply before cleaning. Disconnect the power plug.

The interior of the chamber must be kept clean. Thoroughly remove any residues of the charging material.

Wipe the surfaces with a moistened towel. In addition, you can use the following cleaning agents:

<table>
<thead>
<tr>
<th>Surface Type</th>
<th>Cleaning Agents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exterior surfaces, instrument panel</td>
<td>Standard commercial cleaning detergents free from acid or halides.</td>
</tr>
<tr>
<td></td>
<td>Alcohol-based solutions.</td>
</tr>
<tr>
<td></td>
<td>We recommend using the neutral cleaning agent Art. No. 1002-0016.</td>
</tr>
<tr>
<td>Inner chamber, shelves</td>
<td>Standard commercial cleaning detergents free from acid or halides.</td>
</tr>
<tr>
<td></td>
<td>Copper sulfate solutions or alcohol-based solutions.</td>
</tr>
<tr>
<td></td>
<td>We recommend using the neutral cleaning agent Art. No. 1002-0016.</td>
</tr>
<tr>
<td>Silicone door gasket</td>
<td>Alcohol-based solutions or the neutral cleaning agent Art. No. 1002-0016.</td>
</tr>
<tr>
<td>Zinc coated hinge parts</td>
<td>Standard commercial cleaning detergents free from acid or halides.</td>
</tr>
<tr>
<td>rear chamber wall</td>
<td>Do NOT use a neutral cleaning agent on zinc coated surfaces.</td>
</tr>
</tbody>
</table>
Do not use cleaning agents that may cause a hazard due to reaction with components of the device or the charging material. If there is doubt regarding the suitability of cleaning products, please contact BINDER service.

We recommend using the neutral cleaning agent Art. No. 1002-0016 for thorough cleaning. Any corrosive damage that may arise following use of other cleaning agents is excluded from liability by BINDER GmbH. Any corrosive damage caused by a lack of cleaning, is excluded from liability by BINDER GmbH.

NOTICE

Danger of corrosion by using unsuitable cleaners.
Damage to the chamber.
- Do NOT use acidic or chlorine cleaning detergents.
- Do NOT use a neutral cleaning agent on other kind of surfaces e.g., the zinc coated hinge parts or the rear chamber wall.

To maintain the proper function of the CO₂ sensor, never spray the sensor with any cleaning detergents or disinfectants. Generally perform any cleaning only when the chamber is turned off.

NOTICE

Damage to the CO₂ sensor due to unsuitable cleaning procedures.
- NEVER spray any cleaning detergents directly on the CO₂ sensor.
- Wipe the sensor with a lint-free cloth soaked with cleaning agent.

Use only the detergents or disinfectants recommended by BINDER. Other products are not approved, since they could in particular damage the CO₂ sensor.

For surface protection, perform cleaning as quickly as possible. After cleaning completely remove any cleaning agents from the surfaces by using a moistened towel. Let the chamber dry.

Soapsuds may contain chlorides and must therefore NOT be used for cleaning.

With every decontamination method, always use adequate personal safety controls.

Following cleaning, leave the chamber door open or remove the access port plugs.

The neutral cleaning agent may cause health problems in contact with skin and if ingested. Follow the operating instructions and safety hints labeled on the bottle of the neutral cleaning agent.

Recommended precautions: To protect the eyes use sealed protective goggles. Suitable protective gloves with full contact: butyl or nitrile rubber, penetration time >480 minutes.
CAUTION

Danger of chemical burns through contact with skin or ingestion of the neutral cleaning agent.
Skin and eye damage. Environmental damage.

- Do not ingest the neutral cleaning agent. Keep it away from food and beverages.
- Do NOT empty the neutral cleaning agent into drains.
 - Wear protective gloves and goggles.
 - Avoid skin contact with the neutral cleaning agent.

Following use of the neutral cleaning agent and prior to hot-air sterilization, remove any agent residues by using a moistened towel in order to avoid formation of permanent residues.

21.2 Decontamination / chemical disinfection of the chamber

The operator must ensure that proper decontamination is performed in case a contamination of the chamber by hazardous substances has occurred.

Disconnect the chamber from the power supply prior to chemical decontamination. Disconnect the power plug.

Do not use decontamination agents that may cause a hazard due to reaction with components of the device or the charging material. If there is doubt regarding the suitability of cleaning products, please contact BINDER service.

You can use the following disinfectants:

<table>
<thead>
<tr>
<th>Inner chamber</th>
<th>Standard commercial surface disinfectants free from acid or halides.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Alcohol based solutions.</td>
</tr>
<tr>
<td></td>
<td>We recommend using the disinfectant spray Art. No. 1002-0022.</td>
</tr>
</tbody>
</table>

For chemical disinfection, we recommend using the disinfectant spray Art. No. 1002-0022. Any corrosive damage that may arise following use of other disinfectants is excluded from liability by BINDER GmbH.

With every decontamination method, always use adequate personal safety controls.

In case of contamination of the interior by biologically or chemically hazardous material, there are two possible procedures depending on the type of contamination and charging material.

- Spray the inner chamber with an appropriate disinfectant.
 Before start-up, the chamber must be absolutely dry and ventilated, as explosive gases may form during the decontamination process.
- If necessary, have strongly contaminated inner chamber parts removed by an engineer for cleaning, or have them exchanged. Sterilize the inner chamber parts in a sterilizer or autoclave.

In case of eye contact, the disinfectant spray may cause eye damage due to chemical burns. Follow the operating instructions and safety hints labeled on the bottle of the disinfectant spray.
Recommended precautions: To protect the eyes use sealed protective goggles.

CAUTION

Danger of chemical burns through eye contact with the disinfectant spray.
Eye damage. Environmental damage.

- Do NOT empty the disinfectant spray into drains.
- Wear protective goggles.

Following frequent use of the disinfectant spray and prior to hot-air sterilization, remove any agent remainder by using the neutral cleaning agent and then a moistened towel to avoid formation of permanent residues.

After using the disinfectant spray, allow the chamber to dry thoroughly, and aerate it sufficiently.

21.2.1 Disinfection of the CO₂ sensor

To ensure proper disinfection and function of the CO₂ sensor, BINDER recommends wiping the sensor head with pure alcohol or a non-corrosive, acid and chlorine-free alcohol based surface disinfectant. We recommend using the disinfectant spray Art. No. 1002-0022.

Important: To maintain the proper function of the CO₂ sensor, never spray the sensor with any cleaning detergents or disinfectants. Generally perform any disinfection only when the chamber is turned off. The sensor may be only superficially disinfected with a damp cloth. The hot air sterilization routine is intended for a thorough sterilization of the entire chamber.

NOTICE

Damage to the CO₂ sensor due to unsuitable disinfection procedures.

- NEVER spray the disinfectant directly on the CO₂ sensor.
- Wipe the sensor with a lint-free cloth soaked with the disinfectant.

Use only the detergents or disinfectants recommended by BINDER. Other products are not approved, since they could in particular damage the CO₂ sensor.

21.2.2 Disinfection of components of the fresh water supply system (chamber with active humidification)

Freshwater is supplied by manually filling a freshwater bag (tubular bag set, standard, can be reordered) or a freshwater can (optional water container set). It is also possible to connect prefilled water bottles (optional humidification water set).

The freshwater bag can be refilled several times, but should be replaced from time to time for hygienic reasons.

The silicone tubes and tube connectors can be autoclaved. They can also be replaced for hygienic reasons.
21.3 Hot-air sterilization at 180 °C / 356 °F

The very first sterilization after operation may cause an odor. This is not a quality defect. We recommend ventilating well the room during sterilization.

21.3.1 Overview

<table>
<thead>
<tr>
<th>Heating up</th>
<th>Holding</th>
<th>Cooling down</th>
<th>Equilibrating</th>
</tr>
</thead>
<tbody>
<tr>
<td>187.5 °C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37 °C</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4 hours 6 hours unlimited

Sterilization cycle of 10 hours

Figure 39: Setpoint profile during the sterilization cycle

The chamber can perform an automatically controlled hot-air sterilization cycle. This procedure will take approx. 10 hours and consists of the following steps:

- **Heating up phase**: The chamber heats up the inner chamber as fast as possible to the sterilization setpoint temperature
- **Holding phase**: Constant sterilization setpoint temperature

 The sterilization setpoint temperature is pre-set in factory to 187.5 °C / 369.5 °F. The duration of the heating up and holding phase is in total 4 hours. This ensures that 180 °C / 356 °F is maintained on all internal surfaces for at least 30 minutes
- **Cooling down phase**: Programmed duration of 6 hours until 37 °C / 98.6 °F is reached
- **Then follows an equilibration phase**: After the 10-hour sterilization cycle the controller changes to fixed value operation mode and equilibrates to the set-point which has been entered there (e.g., 37 °C / 98.6 °F).

Note: in the case when two chambers are directly stacked on top of each other without using the original BINDER stacking stand or the BINDER stacking adapter, the exact maintenance of the incubation set parameters in one of the chambers while carrying out sterilization in the other one cannot be assured. Therefore, without using the stacking stand or the stacking adapter, safe incubation is not possible during sterilization of the other chamber. We recommend using a stacking stand (chap. 18.9.1).

CO₂ / O₂ control is deactivated during the sterilization cycle. To activate gas control, the following conditions are required:

- Completing or prematurely terminating the sterilization cycle and confirming the corresponding information message
- Inner chamber temperature below 80 °C

If the temperature exceeds < 80 °C, gas control will remain deactivated even after completing or prematurely terminating the sterilization cycle. Only after the temperature has decreased below 80 °C, gas control will turn on again.
21.3.2 Preparation for a hot-air sterilization

- Before carrying out the first hot-air sterilization, remove any protective lamination sheet from the inner metal surfaces.

- When starting a hot-air sterilization, all gas controls automatically deactivate.

- The safety controller settings are inactive during sterilization. They become functional again following completing or prematurely terminating of the sterilization cycle and/or restart of the chamber at the main power switch.

- The O₂ sensor must be plugged in during a hot-air sterilization.

- Empty the Permadry™ water pan.

 WARNING

 Danger of implosion caused by a filled water pan during sterilization.
 Destruction of the chamber.

 - Empty the Permadry™ water pan before starting the hot-air sterilization.

- Water pans and shelves must be inside the chamber.
- Close the inner glass door and the outer chamber door.

Before starting a hot-air sterilization, the entire interior must be clean and dry. No residue of e.g., water, medium or plastic must remain inside the chamber.

21.3.3 Starting the sterilization cycle and running the hot-air sterilization

In Normal display press the **Program start** icon to access the “Program start” menu.

- In the field “Program type” select the setting “Time program”.
- In the field “Program” select the program “Sterilization”.
- Select the field “Program start” and enter the desired program start time in the “Program start” entry menu. Press the **Confirm** icon.
A confirmation prompt is displayed.

![Confirmation prompt](image)

Make sure that the water pan was emptied and all samples were removed from the chamber and press the **Confirm** icon to confirm the message.

The controller returns to the initial view and the program delay time until program start begins.

When the program delay time is over, the hot-air sterilization cycle begins.

Confirmation prompt.

![Normal display with alarm message](image)

Normal display with alarm message “Sterilization”.

The sterilization is running.

The zero-voltage relay alarm output and the buzzer are not activated.

Opening the outer door leads to prematurely terminating the running sterilization cycle. If this happens during the heating up or holding phase (during 4 hours after starting the sterilization cycle), sterilization will be ineffective (chap. 21.3.4.1).

NOTICE

Danger of interrupting the temperature reaction time by opening the outer door during the heating up or holding phase.
Ineffective sterilization.

Do NOT open the chamber doors during the heating up or holding phase of the sterilization cycle

Glass door and inner chamber become hot during sterilization.

CAUTION

Danger of burning by touching hot chamber parts during a sterilization.
Burns.

Do NOT touch the inner surfaces, inner doors, inner door handles, and door gaskets during a sterilization.

Note: Since the stored sterilization program cannot be changed, it is not accessible via the program path **Main menu > Programs > Time program.**
The sterilization program must not be interrupted using the Program pause icon.

NOTICE

Danger of interrupting the temperature reaction time by pausing the sterilization program during the heating up or holding phase.
Ineffective sterilization.

- DO NOT interrupt a running sterilization program during the heating up or holding phase of the sterilization cycle.
- If necessary, repeat the sterilization.

21.3.4 Prematurely terminating the sterilization cycle

Three events lead to terminating the sterilization cycle prematurely:

- Cancelling the program via the controller menu
 To prematurely terminate the sterilization cycle via the controller menu, press the Program cancelling icon and confirm the confirmation prompt with the Confirm icon (chap. 9.2.2).
- Opening the outer door
- Turning off the chamber at the main power switch, or a power failure

Prematurely terminating the sterilization cycle means terminating it before the entire 10-hour duration is completed. Whether effective sterilization has occurred depends on the time that has elapsed before.

21.3.4.1 Prematurely terminating the sterilization cycle after less than 4 hours: Ineffective sterilization

After prematurely terminating the sterilization cycle after less than 4 hours, the information "Sterilization failed" is shown on the controller display.

The interior may still be hot. Do not touch the glass door and inner surfaces!

Confirm the message with the Confirm icon.

![Popup-Window]

After confirming the message the controller changes to Fixed value operation mode. The setpoints of Fixed value operation mode are then equilibrated.

CO₂ / O₂ control is deactivated and will only be activated after confirming the information message “Sterilization failed” and when the temperature has cooled down to a value below < 80 °C.

When prematurely terminating the sterilization cycle, it may be that the cells/pathogens inside the chamber have not all been killed. If necessary, you should repeat the sterilization.
21.3.4.2 Prematurely terminating the sterilization cycle after more than 4 hours, i.e., during the cooling-down phase: successful sterilization

The duration of the entire sterilization is 10 hours. If you want to shorten the sterilization procedure in order to save time, you can prematurely terminate it during the cooling-down phase, i.e. no sooner than after 4 hours. At this point, the inner temperature is still approx. 140 °C / 284 °F.

The effective sterilization phase (heating up and holding phase) is automatically finished after 4 hours. The chamber is in the cooling-down phase, meaning that the necessary duration for the proper sterilization has occurred.

The information “Successful sterilization” on the controller display indicates a successful hot-air sterilization.

The interior may still be hot. Do not touch the glass door and inner surfaces!

Confirm the message with the Confirm icon.

After confirming the message the controller changes to Fixed value operation mode. The setpoints of Fixed value operation mode are then equilibrated.

If you prefer accelerating cooling-down, proceed as follows:

- If required, open the outer door.
- Cooling-down time:
 - Front door open: at least 1 hour
 - Front door closed: at least 4 hours
- If required, open the glass door.
Glass door and inner chamber become hot during sterilization. The glass door handle reaches a temperature of approx. 150 °C / 302 °F.

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Danger of burning through touching the glass door and inner chamber during or after a sterilization.</td>
</tr>
<tr>
<td>Burns.</td>
</tr>
<tr>
<td>☒ Do NOT touch the glass door and inner surfaces.</td>
</tr>
<tr>
<td>➩ Use gloves or a tool (e.g. pincers) to open the glass door.</td>
</tr>
</tbody>
</table>

21.3.5 Completing the entire sterilization cycle

The effective sterilization phase (heating up and holding phase) is automatically finished after 4 hours. It is followed by a defined 6-hours cooling down phase until 37 °C / 98.6°F is reached. After this sterilization cycle of 10 hours in total, the controller changes to fixed value operation mode and equilibrates to the set-point which has been entered there (e.g., 37 °C / 98.6 °F).

The information “Successful sterilization” on the controller display indicates a successful hot-air sterilization.

Confirm the message with the **Confirm** icon.

![Successful sterilization](image)

CO₂ / O₂ control is deactivated and will only be activated after confirming the information message "Successful sterilization" and when the temperature has cooled down to a value below < 80 °C.
22. **Maintenance and service, troubleshooting, repair, testing**

22.1 **General information, personnel qualification**

- **Maintenance**

 See chap. 22.5.

- **Simple troubleshooting**

 Chap. 22.6 describes troubleshooting by operating personnel. It does not require technical intervention into the chamber, nor disassembly of chamber parts.

 For personnel requirements please refer to chap. 1.1.

- **Detailed troubleshooting**

 If errors cannot be identified with simple troubleshooting, further troubleshooting must be performed by BINDER Service or by BINDER qualified service partners or technicians, in accordance with the description in the Service Manual.

 For personnel requirements please refer to the Service Manual.

- **Repair**

 Repair of the chamber can be performed by BINDER Service or by BINDER qualified service partners or technicians, in accordance with the description in the Service Manual.

 After maintenance, the chamber must be tested prior to resuming operation.

- **Electrical testing**

 To prevent the risk of electrical shock from the electrical equipment of the chamber, an annual repeat inspection as well as a test prior to initial startup and prior to resuming operation after maintenance or repair, are required. This test must meet the requirements of the competent public authorities. We recommend testing under DIN VDE 0701-0702:2008 in accordance with the details in the Service Manual.

 For personnel requirements please refer to the Service Manual.
22.2 Replacing components of the humidifying / dehumidifying system (chamber with active humidification)

22.2.1 Replacing the silicone tube of the fresh water supply system

The silicone tube (DN 3mm) (art. no. 6008-0267) is included with the following humidifying sets:
- Tubular bag set with 3 tubular bags (Art. No. 8009-1083, included): 6 m (chap. 4.5.2)
- Tubular bag set with 12 tubular bags (Art. No. 8009-1058, option): 6 m (chap. 4.5.2)
- Humidification water set (Art. No. 8009-1104, option): 2 m (chap. 4.5.3)
- Water container set (Art. No. 8009-1128, option): 10 m (chap. 4.5.4)

It is also available by the meter from BINDER.

To operate the freshwater supply via tubular bags (standard), a total length of 32 cm is required.

To replace the DN 3mm silicone tube, proceed as described in chap. 4.5.

22.2.2 Replacing the pump head of the fresh water supply system

A pump head for the tube pump for freshwater supply is available under art.no. 5013-0204. To replace the pump head, proceed as described in chap. 4.5.

22.2.3 Replacing the gas fine filter (sterile filter) for ambient air

The air tube for inlet of the ambient air is located in the upper right corner in the recess for the freshwater bag. We recommend replacing the gas fine filter (sterile filter) on this tube about once a month. To do this, hold the sterile filter and pull out a bit the air tube connected to it. Unscrew the filter and screw on a new filter. Then push the tube back in.

Figure 40: Location of the gas fine filter (sterile filter) in the recess for the freshwater bag
22.3 Replacing the CO₂ und O₂/N₂ gas inlet fine filters (sterile filters)

When the chamber is in operation, the incoming gas passes through a fine gas filter (aseptic filter, filtration efficiency 99.99 %, particle size 0.45 µm). This fine filter prevents dirt accumulating in the gas inlet valves and the tubes leading into the inner chamber, which could be in the gas cylinder or in the supply tubes.

When using gas with a technical grade of 99.5 %, we recommend changing the fine gas filter once a year. Please consult BINDER Service. When using gases with less pureness, the changing intervals should be shorter.

- Pull the power plug.

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk of injuries by sharp edges on the rear panel. Cuts.</td>
</tr>
<tr>
<td>Wear protective gloves when removing or installing the cover on the chamber rear</td>
</tr>
</tbody>
</table>

Remove the cover on the chamber rear

Figure 41: Position of the CO₂ sensor and the gas fine filters behind the cover

- Unscrew the desired gas fine filter on both sides from the gas tubes and then screw on a new filter.
- Reinstall the cover on the chamber rear.
22.4 Replacing the CO₂ sensor

- Pull the power plug.

![CAUTION]
Risk of injuries by sharp edges on the rear panel. Cuts.
- Wear protective gloves when removing or installing the cover on the chamber rear.

- Remove the cover on the chamber rear
 The position of the CO₂ sensor behind the cover is shown in Figure 41.

- Unscrew the cable from the sensor.
 Make sure that the sensor cable does not fall into the inner chamber.

- Remove the fixing screws on both sides of the sensor.

- Pull the sensor backwards out of the holder. The filter (white) attached to the sensor is pulled out together with the sensor.

- Then mount the new sensor proceeding in reverse order
- Reinstall the cover on the chamber rear.

The sensor may only be used with the attached filter. After replacing the CO₂ sensor repeat the CO₂ calibration.
22.5 Maintenance intervals, service

DANGER

Electrical hazard during live maintenance work.
Deadly electric shock.
Ø The chamber must NOT become wet during operation or maintenance works.
Ø Do NOT remove the rear panel of the chamber.
➢ Before conducting maintenance work, turn off the chamber at the main power switch and disconnect the power plug.
➢ Make sure that any maintenance work will be conducted by licensed electricians or experts authorized by BINDER.

Ensure regular maintenance work is performed at least once a year and that the legal requirements are met regarding the qualifications of service personnel, scope of testing and documentation.

The warranty becomes void if maintenance work is conducted by non-authorized personnel.

Chamber with active humidification: Have conducted regular maintenance work on the steam humidifier at least once a year. The operating behavior and the maintenance intervals of the humidifier essentially depend on the available water quality and the amount of steam produced in the meantime.

Replace the door gasket only when cold. Otherwise, the door gasket may become damaged.

We recommend taking out a maintenance agreement. Please consult BINDER Service.

BINDER telephone hotline: +49 (0) 7462 2005 555
BINDER fax hotline: +49 (0) 7462 2005 93555
BINDER e-mail hotline: service@binder-world.com
BINDER service hotline USA: +1 866 885 9794 or +1 631 224 4340 x3 (toll-free in the USA)
BINDER service hotline Asia Pacific: +852 390 705 04 or +852 390 705 03
BINDER service hotline Russia and CIS +7 495 988 15 16
BINDER Internet website http://www.binder-world.com
BINDER address BINDER GmbH, post office box 102, 78502 Tuttlingen, Germany

International customers, please contact your local BINDER distributor.

The gas sensors are especially adjusted for the individual incubator. When exchanging a sensor, you must repeat control adjustment for CO₂ and O₂ (chamber with O₂ control).
After 8760 operating hours or two years the following message appears:

![Notification]

After confirmation with the Confirm icon, the message window will pop up again every two weeks until it is reset by BINDER Service.

22.6 Simple troubleshooting

Defects and shortcomings can compromise the operational safety of the chamber and can lead to risks and damage to equipment and persons. If there are is a technical fault or shortcoming, take the chamber out of operation and inform BINDER Service. If you are not sure whether there is a technical fault, proceed according to the following list. If you cannot clearly identify an error or there is a technical fault, please contact BINDER Service.

Only qualified service personnel authorized by BINDER must perform repair. Repaired chambers must comply with the BINDER quality standards.

22.6.1 General

<table>
<thead>
<tr>
<th>Fault description</th>
<th>Possible cause</th>
<th>Required measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chamber without function.</td>
<td>No power supply.</td>
<td>Check connection to power supply.</td>
</tr>
<tr>
<td></td>
<td>Wrong voltage.</td>
<td>Check power supply for voltage of 100-120V or 200-240V.</td>
</tr>
<tr>
<td></td>
<td>Chamber fuse has responded.</td>
<td>Check chamber fuse and replace it if appropriate. If it responds again, contact BINDER service.</td>
</tr>
<tr>
<td></td>
<td>Controller defective.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nominal temperature exceeded by 10 °C due to chamber failure. Over temperature protective device (class 1) responds.</td>
<td>Contact BINDER service.</td>
</tr>
</tbody>
</table>
22.6.2 Heating

<table>
<thead>
<tr>
<th>Fault description</th>
<th>Possible cause</th>
<th>Required measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excess temperature. Having reached the setpoint, the temperature exceeds the setpoint by more than the set tolerance range value (more than 10 min.)</td>
<td>Site of installation too warm. Difference between the set temperature and the ambient temperature too low.</td>
<td>Acknowledge the alarm on the controller. Observe the difference between the set temperature and the ambient temperature, see technical data chap. 24.4.</td>
</tr>
<tr>
<td></td>
<td>Controller defective.</td>
<td>Acknowledge the alarm on the controller.</td>
</tr>
<tr>
<td></td>
<td>Semiconductor relay defective</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Temperature controller not adjusted.</td>
<td>Acknowledge the alarm on the controller. Calibrate and adjust the temperature controller.</td>
</tr>
<tr>
<td>Excess temperature. Overtemperature safety controller class 3.1 responds.</td>
<td>Safety controller setpoint value exceeded.</td>
<td>Acknowledge the alarm on the controller. Check setting of temperature setpoint and of the safety controller class 3.1 setpoint. If appropriate, select suitable value.</td>
</tr>
<tr>
<td></td>
<td>Too much external heat load.</td>
<td>Acknowledge the alarm on the controller. Reduce heat load.</td>
</tr>
<tr>
<td></td>
<td>Controller defective.</td>
<td>Acknowledge the alarm on the controller.</td>
</tr>
<tr>
<td></td>
<td>Semiconductor relay defective</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Safety controller defective.</td>
<td></td>
</tr>
<tr>
<td>Too low temperature. Having reached the setpoint, the temperature falls below the setpoint by more than the set tolerance range value (more than 10 min.) or the temperature doesn’t reach the tolerance range within 3 hours from turning on the chamber or closing the door.</td>
<td>Chamber door not properly closed.</td>
<td>Acknowledge the alarm on the controller. Completely close chamber door.</td>
</tr>
<tr>
<td></td>
<td>Door gaskets defective.</td>
<td>Acknowledge the alarm on the controller. Replace door gasket.</td>
</tr>
<tr>
<td></td>
<td>Controller defective.</td>
<td>Acknowledge the alarm on the controller. Check the function of the temperature controller.</td>
</tr>
<tr>
<td></td>
<td>Door gasket defective.</td>
<td>Replace door gasket.</td>
</tr>
<tr>
<td></td>
<td>Temperature controller not adjusted.</td>
<td>Calibrate and adjust the temperature controller.</td>
</tr>
<tr>
<td>Chamber doesn’t heat up.</td>
<td>Inner chamber temperature has reached the safety controller setpoint. Safety controller set too low.</td>
<td>Acknowledge the alarm on the controller. Check temperature setpoint setting. If appropriate, select suitable safety controller setpoint (chap. 12.2).</td>
</tr>
<tr>
<td></td>
<td>Safety controller defective.</td>
<td>Acknowledge the alarm on the controller. Contact BINDER service.</td>
</tr>
<tr>
<td>Chamber doesn’t heat up.</td>
<td>Pt 100 sensor defective.</td>
<td>Contact BINDER service.</td>
</tr>
<tr>
<td></td>
<td>Heating element defective.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semiconductor relay defective.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Controller defective.</td>
<td></td>
</tr>
</tbody>
</table>
Fault description

<table>
<thead>
<tr>
<th>Fault description</th>
<th>Possible cause</th>
<th>Required measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very long heating-up times.</td>
<td>Chamber fully loaded.</td>
<td>Load the chamber less or consider longer heating-up times.</td>
</tr>
<tr>
<td>The displayed actual temperature value deviates largely compared with a reference method.</td>
<td>Temperature control not adjusted.</td>
<td>Calibrate and adjust the temperature control.</td>
</tr>
<tr>
<td></td>
<td>Temperature sensor defective.</td>
<td>Transfer the cultures to another incubator and contact BINDER Service.</td>
</tr>
</tbody>
</table>

22.6.3 Gas cylinder pressure too low

The alarm messages indicate that the pressure in the supply lines of CO₂, O₂ (chamber with O₂ control) and N₂ (chamber with O₂ control) has dropped below 0.3 bar. If no gas cylinder changer is installed, the gas cylinder must be replaced. Observe the safety instructions and the maximum outlet pressure (chap. 4.4).

Prerequisite for pressure alarm messages for O₂ and N₂ (chamber with O₂ control) is that the O₂ / N₂ control with the respective alarms are activated (chap. 6.7, 7.3).

Note: The recovery times of the gas concentrations inside the chamber following door opening, which are indicated in the technical data (chap. 24.4), refer to a connection pressure of 2.0 bar / 29 psi. Decreasing supply pressure down to the shift point (alarm point) of 0.3 bar / 4.4 psi results in longer recovery times. Check the pressure displays of your gas supply. If very short recovery times are required or the door is opened frequently, replace the gas cylinders promptly when the pressure decreases below 2.0 bar / 29 psi.

<table>
<thead>
<tr>
<th>Fault description</th>
<th>Possible cause</th>
<th>Required measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low CO₂ outlet pressure (< 0.3 bar)</td>
<td>CO₂ cylinder is not connected correctly.</td>
<td>Acknowledge the alarm on the controller. Correctly connect the gas cylinder.</td>
</tr>
<tr>
<td>Alarm message “CO₂ pressure”</td>
<td>Connected gas cylinder is closed.</td>
<td>Acknowledge the alarm on the controller. Open the gas cylinder.</td>
</tr>
<tr>
<td></td>
<td>Connected gas cylinder is empty.</td>
<td>Acknowledge the alarm on the controller. Replace the gas cylinder. Observe the safety instructions and the maximum outlet pressure (chap. 4.4).</td>
</tr>
<tr>
<td></td>
<td>Gas hose is dirty or obstructed.</td>
<td>Acknowledge the alarm on the controller. Turn off the gas supply and remove the gas connections. Check the tube system for dirt accumulation or obstruction, clean or replace it.</td>
</tr>
<tr>
<td></td>
<td>Controller malfunction.</td>
<td>Acknowledge the alarm on the controller. If necessary, contact BINDER Service.</td>
</tr>
<tr>
<td></td>
<td>Pressure sensor system defective.</td>
<td>Acknowledge the alarm on the controller. Contact BINDER Service.</td>
</tr>
</tbody>
</table>
Fault description

<table>
<thead>
<tr>
<th>Chamber with O₂ control: Low O₂ outlet pressure (< 0.3 bar). Alarm message “O₂ pressure”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Possible cause</td>
</tr>
<tr>
<td>O₂ cylinder is not connected correctly.</td>
</tr>
<tr>
<td>Connected gas cylinder is closed.</td>
</tr>
<tr>
<td>Connected gas cylinder is empty.</td>
</tr>
<tr>
<td>Gas hose is dirty or obstructed.</td>
</tr>
<tr>
<td>Controller malfunction</td>
</tr>
<tr>
<td>Pressure sensor system defective.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chamber with O₂ control: Low N₂ outlet pressure (< 0.3 bar). Alarm message “N₂ pressure”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Possible cause</td>
</tr>
<tr>
<td>N₂ cylinder is not connected correctly.</td>
</tr>
<tr>
<td>Connected gas cylinder is closed.</td>
</tr>
<tr>
<td>Connected gas cylinder is empty.</td>
</tr>
<tr>
<td>Gas hose is dirty or obstructed.</td>
</tr>
<tr>
<td>Controller malfunction</td>
</tr>
<tr>
<td>Pressure sensor system defective.</td>
</tr>
</tbody>
</table>

22.6.4 Gas concentration

<table>
<thead>
<tr>
<th>Fault description</th>
<th>Possible cause</th>
<th>Required measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excess CO₂ concentration. Having reached the setpoint, CO₂ exceeds the setpoint by more than the set tolerance range value (more than 10 min.) Alarm message “CO₂ range”</td>
<td>Temporary disturbance of the CO₂ control.</td>
<td>Acknowledge the alarm on the controller. Turn off the chamber. Open the chamber doors for approx. 5 minutes. Observe the general information for safe handling of CO₂ (chap. 1.8). Turn on the chamber again. Upon renewed alarm, contact BINDER service.</td>
</tr>
<tr>
<td>CO₂ sensor defective.</td>
<td></td>
<td>Acknowledge the alarm on the controller. Contact BINDER Service. To replace the sensor proceed as described in chap. 22.4.</td>
</tr>
<tr>
<td>Fault description</td>
<td>Possible cause</td>
<td>Required measures</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Chamber with O₂ control: Excess O₂ concentration.**</td>
<td>Temporary disturbance of the O₂control.</td>
<td>Acknowledge the alarm on the controller. Turn off the chamber. Open the chamber doors for approx. 5 minutes. Observe the general information for safe handling of oxygen (chap. 1.8). Prevent oxygen enrichment in the ambiance of the chamber. Turn on the chamber again. Upon renewed alarm, contact BINDER service.</td>
</tr>
<tr>
<td>Having reached the setpoint, O₂ exceeds the setpoint by more than the set tolerance range value (more than 10 min.) (O₂ control option)</td>
<td>Alarm message “O₂ range”</td>
<td>O₂ sensor defective. Acknowledge the alarm on the controller. Contact BINDER Service.</td>
</tr>
<tr>
<td>Recovery time (up to 5 vol.-% CO₂) after doors were open for 2 minutes is < 2 minutes</td>
<td>CO₂ sensor system defective.</td>
<td>Contact BINDER Service.</td>
</tr>
<tr>
<td>Too low CO₂ concentration.</td>
<td>Temporary disturbance of the CO₂control.</td>
<td>Acknowledge the alarm on the controller. Turn off the chamber. After approx. 5 minutes turn on the chamber again. Upon renewed alarm, contact BINDER service.</td>
</tr>
<tr>
<td>Having reached the setpoint, CO₂ falls below the setpoint by more than the set tolerance range value (more than 10 min.) or CO₂ doesn’t reach the tolerance range within 3 hours from turning on the chamber or closing the door.</td>
<td>Alarm message “CO₂ range”</td>
<td>CO₂ sensor defective. Acknowledge the alarm on the controller. Contact BINDER Service. To replace the sensor proceed as described in chap. 22.4.</td>
</tr>
<tr>
<td>Chamber with O₂ control: Too low O₂ concentration.**</td>
<td>Temporary disturbance of the O₂control.</td>
<td>Acknowledge the alarm on the controller. Turn off the chamber. After approx. 5 minutes turn on the chamber again. Upon renewed alarm, contact BINDER service.</td>
</tr>
<tr>
<td>Having reached the setpoint, O₂ falls below the setpoint by more than the set tolerance range value (more than 10 min.) or O₂ doesn’t reach the tolerance range within 3 hours from turning on the chamber or closing the door.</td>
<td>Alarm message “O₂ range”.</td>
<td>O₂ sensor defective. Acknowledge the alarm on the controller. Contact BINDER Service.</td>
</tr>
<tr>
<td>Too low gas concentration.</td>
<td>Door gaskets defective.</td>
<td>Replace door gaskets</td>
</tr>
<tr>
<td>The concentration of CO₂ or O₂ (chamber with O₂ control) does not reach the adjusted set value.</td>
<td>Doors not closed properly.</td>
<td>Close door properly.</td>
</tr>
<tr>
<td>Connected gas cylinder is empty or not opened.</td>
<td>Open or replace gas cylinder.</td>
<td></td>
</tr>
<tr>
<td>Gas cylinder is not connected correctly.</td>
<td>Correctly connect the gas cylinder.</td>
<td></td>
</tr>
<tr>
<td>Gas hose is dirty or obstructed.</td>
<td>Check the tube system for dirt accumulation or obstruction, clean or replace it.</td>
<td></td>
</tr>
<tr>
<td>Recovery time (up to 5 vol.-% CO₂) after doors were open for 2 minutes is > 10 minutes.</td>
<td>Obstructed gas supply.</td>
<td>Check gas supply (cylinder, connections, hose system).</td>
</tr>
<tr>
<td>Unusually high gas consumption.</td>
<td>Door gaskets defective.</td>
<td>Replace door gaskets</td>
</tr>
<tr>
<td></td>
<td>Gas sensor not adjusted.</td>
<td>Calibrate the sensor.</td>
</tr>
<tr>
<td></td>
<td>Gas sensor defective.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gas fine filter not connected correctly.</td>
<td>Contact BINDER Service</td>
</tr>
</tbody>
</table>
Fault description

<table>
<thead>
<tr>
<th>Fault description</th>
<th>Possible cause</th>
<th>Required measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>The displayed actual value of CO₂ deviates largely compared with a reference method. The pH indicator of the cell culture medium changes its normal color.</td>
<td>CO₂ control not adjusted. CO₂ sensor defective.</td>
<td>Calibrate and adjust CO₂ control. Transfer the cultures to another incubator and contact BINDER Service. To replace the sensor proceed as described in chap. 22.4.</td>
</tr>
<tr>
<td>Chamber with O₂ control: The displayed actual value of O₂ (option) deviates largely compared with a reference method.</td>
<td>O₂ control not adjusted. O₂ sensor defective.</td>
<td>Calibrate and adjust O₂ control. Transfer the cultures to another incubator and contact BINDER Service.</td>
</tr>
<tr>
<td>No gas control after hot-air sterilization.</td>
<td>Sterilization cycle still running. Information message not confirmed. Inner chamber temperature above 80 °C</td>
<td>Terminate hot-air sterilization. Confirm the information message with “Ok”. Let the inner chamber temperature decrease below 80 °C.</td>
</tr>
</tbody>
</table>

22.6.5 Sterilization

<table>
<thead>
<tr>
<th>Indication</th>
<th>Possible cause</th>
<th>Required measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>The sterilization is running. Alarm message “Sterilization”.</td>
<td>Sterilization cycle is running</td>
<td>Acknowledge the alarm on the controller. Do not open the door.</td>
</tr>
</tbody>
</table>

22.6.6 Humidity (chamber without active humidification)

<table>
<thead>
<tr>
<th>Fault description</th>
<th>Possible cause</th>
<th>Required measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condensations inside the chamber.</td>
<td>Permadry™ pan filled with water when the chamber is not operating. Door gaskets defective. Doors not closed properly. Humidity set too high.</td>
<td>Empty Permadry™ pan when the chamber is not operating. Replace door gaskets Close door properly. Reduce humidity (chap. 6.8)</td>
</tr>
<tr>
<td>Condensation on the doors or on the optional divided inner door, gas-proof.</td>
<td>Chamber placed on very cold floor. Door gaskets defective. Doors not closed properly. Humidity set too high. Door heating set too low.</td>
<td>Place the chamber on a BINDER stand to increase the distance to the floor. Replace door gaskets Close door properly. Reduce humidity (chap. 6.8) Contact BINDER Service to adjust the door heating</td>
</tr>
<tr>
<td>Too low humidity inside.</td>
<td>Humidity set too low. Chamber door not properly closed.</td>
<td>Increase humidity (chap. 6.8) Completely close chamber door.</td>
</tr>
<tr>
<td>Permadry™ pan empty.</td>
<td></td>
<td>Fill the outer Permadry™ pan with water up to the marking on the inner pan with distilled, sterile water. The pan must have thorough contact to the bottom of the inner chamber, see chap. 4.2.</td>
</tr>
</tbody>
</table>
22.6.7 Humidity (chamber with active humidification)

<table>
<thead>
<tr>
<th>Fault description</th>
<th>Possible cause</th>
<th>Required measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humidity fluctuation: Control accuracy of +/- 3 % r.h. is not reached.</td>
<td>Door gasket defective.</td>
<td>Replace door gasket.</td>
</tr>
<tr>
<td></td>
<td>Door opened very frequently.</td>
<td>Open doors less frequently.</td>
</tr>
<tr>
<td>Humidity fluctuation, together with temperature fluctuation > 1 °C with a set-point approx. 3 °C above ambient temperature.</td>
<td>Place of installation too hot.</td>
<td>Select cooler place of installation or contact BINDER service.</td>
</tr>
<tr>
<td>Alarm message “Humidity system”.</td>
<td>Humidity module defective.</td>
<td>Acknowledge the alarm on the controller. Contact BINDER service.</td>
</tr>
<tr>
<td>Alarm message “Freshwater supply”.</td>
<td>Freshwater bag is empty or contains air.</td>
<td>Acknowledge the alarm on the controller. Fill the freshwater bag correctly.</td>
</tr>
<tr>
<td></td>
<td>The silicon tube is not correctly inserted into the pump.</td>
<td>Acknowledge the alarm on the controller. Place the silicon tube correctly (chap. 4.5.2).</td>
</tr>
<tr>
<td></td>
<td>Silicon tube kinked.</td>
<td></td>
</tr>
<tr>
<td>Too high humidity inside the chamber (exceeding the set-point)</td>
<td>Ambient humidity too high at site of installation</td>
<td>Possible dehumidification depends on ambient humidity. Select installation site with lower humidity.</td>
</tr>
</tbody>
</table>

22.6.8 Controller

<table>
<thead>
<tr>
<th>Fault description</th>
<th>Possible cause</th>
<th>Required measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>No chamber function (dark display).</td>
<td>Display in standby mode.</td>
<td>Press on touchscreen.</td>
</tr>
<tr>
<td></td>
<td>Main power switch turned off.</td>
<td>Turn on the main power switch.</td>
</tr>
<tr>
<td>Menu functions not available.</td>
<td>Menu functions not available with current authorization level.</td>
<td>Log in with the required higher authorization. or contact BINDER service to obtain an activation code (chap. 13.6).</td>
</tr>
<tr>
<td>No access to controller</td>
<td>Password incorrect.</td>
<td>Contact BINDER service.</td>
</tr>
<tr>
<td>Chart recorder function: measured-value memory cleared; information lost.</td>
<td>New setting of storage rate or scaling (minimum and/or maximum) (chap. 16.2).</td>
<td>Change the storage rate or scaling ONLY if the previously registered data are no longer required.</td>
</tr>
<tr>
<td>Controller does not equilibrate to setpoints entered in Fixed value operation mode</td>
<td>Controller is not in Fixed value operation mode.</td>
<td>Change to Fixed value operation mode.</td>
</tr>
<tr>
<td></td>
<td>CO₂ control is deactivated.</td>
<td>Activate CO₂ control (chap. 6.7).</td>
</tr>
<tr>
<td></td>
<td>Chamber with O₂ control: O₂ control is deactivated.</td>
<td>Activate O₂ control (chap. 6.7).</td>
</tr>
<tr>
<td></td>
<td>Chamber with active humidification: Humidity control is deactivated.</td>
<td>Activate humidity control (chap. 6.7).</td>
</tr>
<tr>
<td>Controller does not equilibrate to program set-points.</td>
<td>Controller is not in program operation mode, or program delay time is running.</td>
<td>Start the program again. If appropriate, wait for the program delay time.</td>
</tr>
<tr>
<td>Program duration longer than programmed.</td>
<td>Tolerances have been programmed.</td>
<td>For rapid transition phases, do NOT program tolerance limits in order to permit maximum heating, refrigerating, or humidification speed.</td>
</tr>
<tr>
<td>Fault description</td>
<td>Possible cause</td>
<td>Required measures</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Program keeps the last program setpoint constant while in setting “ramp”.</td>
<td>Program line with setting “ramp” is incomplete.</td>
<td>When programming with setting “ramp”, define the end value of the desired cycle by adding an additional section with a section time of at least one second.</td>
</tr>
<tr>
<td>Ramp temperature transitions are only realized as steps.</td>
<td>Setting “step” has been selected.</td>
<td>Select setting “ramp”.</td>
</tr>
<tr>
<td>Chamber with active humidification: Humidity alarm when operating without water supply.</td>
<td>Humidity control is activated.</td>
<td>Deactivate humidity control (chap. 6.7).</td>
</tr>
<tr>
<td>Acknowledging the alarm does not cancel the alarm state.</td>
<td>Cause of alarm persists.</td>
<td>Remove cause of alarm. If the alarm state continues, contact BINDER service.</td>
</tr>
<tr>
<td>Alarm message: - - - - or <<<< or >>>></td>
<td>Sensor rupture between sensor and controller or Pt 100 sensor defective.</td>
<td>Contact BINDER service.</td>
</tr>
</tbody>
</table>

22.6.9 Open door

<table>
<thead>
<tr>
<th>Indication</th>
<th>Possible cause</th>
<th>Required measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outer door open (longer than the selected alarm delay time) Alarm message “Door open”.</td>
<td>Outer door open or not properly closed.</td>
<td>Acknowledge the alarm on the controller. Close the door. The triggered zero-voltage relay alarm contact switches back.</td>
</tr>
</tbody>
</table>

22.7 Sending the chamber back to BINDER GmbH

If you return a BINDER product to us for repair or any other reason, we will only accept the product upon presentation of an authorization number (RMA number) that has previously been issued to you. An authorization number will be issued after receiving your complaint either in writing or by telephone prior to your sending the BINDER product back to us. The authorization number will be issued following receipt of the information below:

- BINDER product type and serial number
- Date of purchase
- Name and address of the dealer from which you bought the BINDER product
- Exact description of the defect or fault
- Complete address, contact person and availability of that person
- Exact location of the BINDER product in your facility
- A contamination clearance certificate (chap. 27) must be faxed in advance

The authorization number must be applied to the packaging in such a way that it can be easily recognized or be recorded clearly in the delivery documents.

For security reasons we cannot accept a chamber delivery if it does not carry an authorization number.

Return address:
BINDER GmbH
Gänsäcker 16
Abteilung Service
78502 Tuttlingen, Germany
23. Disposal

23.1 Disposal of the transport packing

23.1.1 Outer chamber packing

<table>
<thead>
<tr>
<th>Packing element</th>
<th>Material</th>
<th>Disposal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Straps to fix packing on pallet (no image)</td>
<td>Plastic</td>
<td>Plastic recycling</td>
</tr>
<tr>
<td>Shipping box</td>
<td>Cardboard</td>
<td>Paper recycling</td>
</tr>
<tr>
<td>Edge stuffing, top</td>
<td>PE foam</td>
<td>Plastic recycling</td>
</tr>
<tr>
<td>Pallet with foamed plastic stuffing</td>
<td>PE foam</td>
<td>Plastic recycling</td>
</tr>
<tr>
<td></td>
<td>Solid wood (IPPC standard)</td>
<td>Wood recycling</td>
</tr>
</tbody>
</table>

23.1.2 Packing inside the chamber and equipment

<table>
<thead>
<tr>
<th>Packing element</th>
<th>Material</th>
<th>Disposal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Door protection</td>
<td>PE foam</td>
<td>Plastic recycling</td>
</tr>
<tr>
<td>Packing box equipment</td>
<td>Cardboard</td>
<td>Paper recycling</td>
</tr>
<tr>
<td>Insulating air cushion foil</td>
<td>PE foil</td>
<td>Plastic recycling</td>
</tr>
<tr>
<td>Bag for operating manuals</td>
<td>PE foil</td>
<td>Plastic recycling</td>
</tr>
</tbody>
</table>

If recycling is not possible, all packing parts can also be disposed of with normal waste.
23.2 Decommissioning

- Turn off the chamber at the main power switch and disconnect it from the power supply (pull the power plug).

 When switching off the main power switch, the stored parameters remain saved.

- Turn off the CO₂ supply and the O₂ / N₂ supplies (chamber with O₂ control). Remove the gas connections.

- Chamber with active humidification: Empty the freshwater bag.

- Let the inner chamber sufficiently cool down after a hot-air sterilization before removing any parts.

- The Permadry™ water pan must not remain filled while the chamber is out of operation. Otherwise condensation on the inner surfaces may occur. In this case, clean and dry the chamber with doors open for at least one hour before restarting the chamber. BINDER recommends performing a hot air sterilization of the chamber before commissioning.

- Temporal decommissioning: See indications for appropriate storage, chap. 3.3.

- Final decommissioning: Dispose of the chamber as described in chap. 23.3 to 23.5.

- When restarting the chamber, please pay attention to the corresponding safety information.

23.3 Disposal of the chamber in the Federal Republic of Germany

According to Annex I of Directive 2012/19/EU of the European Parliament and of the Council on waste electrical and electronic equipment (WEEE), BINDER devices are classified as “monitoring and control instruments” (category 9) only intended for professional use”. They must not be disposed of at public collecting points.

The chambers bear the symbol for the marking of electrical and electronic equipment manufactured / placed on the market in the EU after 13 August 2005 and be disposed of in separate collection according to Directive 2012/19/EU on waste electrical and electronic equipment (WEEE) and German national law for electrical and electronic equipment (Elektro- und Elektronikgerätegesetz, ElektroG). WEEE marking: crossed-out wheeled bin with solid bar under. A significant part of the materials must be recycled in order to protect the environment.

At the end of the device’s service life, have the chamber disposed of according to the German national law for electrical and electronic equipment (Elektro- und Elektronikgerätegesetz, ElektroG from 20 October 2015, BGBl. I p. 1739) or contact BINDER service who will organize taking back and disposal of the chamber according to the German national law for electrical and electronic equipment (Elektro- und Elektronikgerätegesetz, ElektroG from 20 October 2015, BGBl. I p. 1739).

NOTICE

Danger of violation against existing law if not disposed of properly.

∅ Do NOT dispose of BINDER devices at public collecting points.

➢ Have the device disposed of professionally at a recycling company which is certified according to the German national law for electrical and electronic equipment (Elektro- und Elektronikgerätegesetz, ElektroG from 20 October 2015, BGBl. I p. 1739).

or

➢ Instruct BINDER Service to dispose of the device. The general terms of payment and delivery of BINDER GmbH apply, which were valid at the time of purchasing the chamber.

Certified companies disassemble waste (used) BINDER equipment in primary substances for recycling according to Directive 2012/19/EU. The devices must be free from toxic, infectious or radioactive substances in order to eliminate any health hazards to the employees of the recycling companies.
Prior to handing the chamber over to a recycling company, it is the user’s responsibility that it is free from toxic, infectious or radioactive substances.

Prior to disposal, clean all introduced or residual toxic substances from the chamber.

Prior to disposal, disinfect the chamber from all sources of infection. Be aware that sources of infection may also be located outside the inner chamber.

If you cannot safely remove all toxic substances and sources of infection from the chamber, dispose of it as special waste according to national law.

Prior to disposal, disinfect the chamber from all sources of infection. Be aware that sources of infection may also be located outside the inner chamber.

If you cannot safely remove all toxic substances and sources of infection from the chamber, dispose of it as special waste according to national law.

Fill out the contamination clearance certificate (chap. 27) and enclose it with the chamber.

WARNING

Danger of intoxication and infection through contamination of the chamber with toxic, infectious or radioactive substances.

Damages to health.

Never take a chamber contaminated with toxic substances or sources of infection for recycling according to Directive 2012/19/EU.

- Prior to disposal, remove all toxic substances and sources of infection from the chamber.
- A chamber from which all toxic substances or sources of infection cannot be safely removed must be considered as “special” waste according to national law. Dispose of it accordingly.

23.4 Disposal of the chamber in the member states of the EU except for the Federal Republic of Germany

According to Annex I of Directive 2012/19/EU of the European Parliament and of the Council on waste electrical and electronic equipment (WEEE), BINDER devices are classified as “monitoring and control instruments” (category 9) only intended for professional use”. They must not be disposed of at public collecting points.

The chambers bear the symbol for the marking of electrical and electronic equipment manufactured / placed on the market in the EC after 13 August 2005 and be disposed of in separate collection according to the Directive 2012/19/EU on waste electrical and electronic equipment (WEEE). WEEE marking: crossed-out wheeled bin with solid bar under.

At the end of the device’s service life, notify the distributor who sold you the device, who will take back and dispose of the chamber according to the Directive 2012/19/EU on waste electrical and electronic equipment (WEEE).

NOTICE

Danger of violation against existing law if not disposed of properly.

- Do NOT dispose of BINDER devices at public collecting points.

 - Have the device disposed of professionally at a recycling company that is certified according to conversion of the Directive 2012/19/EU into national law.

 or

 - Instruct the distributor who sold you the device to dispose of it. The agreements apply that were agreed with the distributor when purchasing the chamber (e.g. his general terms of payment and delivery).

 - If your distributor is not able to take back and dispose of the chamber, please contact BINDER service.
Certified companies disassemble waste (used) BINDER equipment in primary substances for recycling according to Directive 2012/19/EU. The devices must be free from toxic, infectious or radioactive substances in order to eliminate any health hazards to the employees of the recycling companies.

- Prior to handing the chamber over to a recycling company, it is the user’s responsibility that it is free from toxic, infectious or radioactive substances.
- Prior to disposal, clean all introduced or residual toxic substances from the chamber.
- Prior to disposal, disinfect the chamber from all sources of infection. Be aware that sources of infection may also be located outside the inner chamber.
- If you cannot safely remove all sources of infection and toxic substances from the chamber, dispose of it as special waste according to national law.
- Fill out the contamination clearance certificate (chap. 27) and enclose it with the chamber.

WARNING

Danger of intoxication and infection through contamination of the chamber with toxic, infectious or radioactive substances.

Damages to health.

- NEVER take a chamber contaminated with toxic substances or sources of infection for recycling according to Directive 2012/19/EU.
- Prior to disposal, remove all toxic substances and sources of infection from the chamber.
- A chamber from which all toxic substances or sources of infection cannot be safely removed must be considered as “special” waste according to national law. Dispose of it accordingly.

23.5 Disposal of the chamber in non-member states of the EU

NOTICE

Danger of violation against existing law if not disposed of properly.

Alteration of the environment.

- For final decommissioning and disposal of the chamber, please contact BINDER service.
- Follow the statutory regulations for appropriate, environmentally friendly disposal.

The main board of the chamber includes a lithium cell. Please dispose of it according to national regulations.
24. Technical description

24.1 Factory calibration and adjustment

This chamber was calibrated and adjusted in the factory. Calibration and adjustment were performed using standardized test instructions, according to the QM DIN EN ISO 9001 system applied by BINDER (certified since December 1996 by TÜV CERT). All test equipment used is subject to the administration of measurement and test equipment that is also a constituent part of the BINDER QM DIN EN ISO 9001 systems. They are controlled and calibrated to a DKD-Standard at regular intervals.

A record of this calibration and adjustment is part of the BINDER test certificate of the chamber.

Adjustment in factory:

- **Temperature**: 37 °C / 98.6°F measured in the center of the usable volume
- **CO₂**: 0 vol.-% CO₂ (100 vol.-% N₂) and 5 vol.-% CO₂ (analyzed test gas directly exposed to the sensor head)
- **O₂** (chamber with O₂ control): 0 vol.-% O₂ (100 vol.-% N₂, analyzed test gas directly exposed to the sensor head) and 20.9 vol.-% O₂ (ambient air).
- **Humidity** (chamber with active humidification): 93 % r.h.

Repeated calibrations are recommended in periods of 12 months.

For temperature and humidity calibration and adjustment, BINDER service uses electronic measuring and display devices traceable to an acknowledged standards/calibration institution (DKD or PTB for Germany) with a valid calibration certificate.

Test gases with an analyzed concentration serve to calibrate the sensor systems for CO₂ and O₂ (chamber with O₂ control). The sensor heads are exposed directly to the test gas.

24.2 Over current protection

The chamber is protected by a chamber-protection against over current, accessible from the outside. It is located at the rear of the chamber below the strain relief of the power cord. The fuse holder is equipped with a fuse clip 5mm x 20 mm (CB) or 6.3 x32 mm (CB-UL). Replace this fuse only with a substitute of the same ratings. Refer to the technical data of the respective device type. If this fuse is blown, please inform an electronic engineer or BINDER service.
24.3 Definition of usable volume

The usable volume illustrated below is calculated as follows:

\[V_{\text{USE}} = (A - 2 \times a) \times (B - 2 \times b) \times (C - 2 \times c) \]

\[a = 0.1 \times A \]
\[b = 0.1 \times B \]
\[c = 0.1 \times C \]

A, B, C = internal dimensions (W, H, D)
a, b, c = wall separation

Figure 42: Determination of the usable volume

The technical data refers to the defined usable volume.

Do NOT place samples outside this usable volume.
Do NOT load this volume by more than half to enable sufficient airflow inside the chamber.
Do NOT divide the usable volume into separate parts with large area samples.
Do NOT place samples too close to each other in order to permit circulation between them
and thus obtain a homogenous distribution of temperature, CO₂, O₂ (chamber with O₂
control)., and humidity.

24.4 CB / CB-UL technical data

<table>
<thead>
<tr>
<th>Chamber size</th>
<th>56</th>
<th>170</th>
<th>260</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exterior dimensions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Width, net</td>
<td>mm / inch</td>
<td>520 / 20.47</td>
<td>680 / 26.77</td>
</tr>
<tr>
<td>Height including feet</td>
<td>mm / inch</td>
<td>675 / 26.57</td>
<td>870 / 34.25</td>
</tr>
<tr>
<td>Depth, net</td>
<td>mm / inch</td>
<td>550 / 21.65</td>
<td>715 / 28.15</td>
</tr>
<tr>
<td>Depth plus door handle, l-triangle</td>
<td>mm / inch</td>
<td>55 / 2.16</td>
<td>55 / 2.16</td>
</tr>
<tr>
<td>Depth plus power connection and gas connection</td>
<td>mm / inch</td>
<td>10 / 0.39</td>
<td>10 / 0.39</td>
</tr>
<tr>
<td>Wall clearance rear (minimum)</td>
<td>mm / inch</td>
<td>100 / 3.94</td>
<td>100 / 3.94</td>
</tr>
<tr>
<td>Wall clearance side (minimum)</td>
<td>mm / inch</td>
<td>50 / 1.97</td>
<td>50 / 1.97</td>
</tr>
<tr>
<td>Doors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quantity of outer doors</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Quantity of inner doors (inner glass door or divided inner door)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Quantity of individual inner glass doors (with divided inner door)</td>
<td>4</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>Interior dimensions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Width</td>
<td>mm / inch</td>
<td>400 / 15.75</td>
<td>560 / 22.05</td>
</tr>
<tr>
<td>Height</td>
<td>mm / inch</td>
<td>400 / 15.75</td>
<td>600 / 23.62</td>
</tr>
<tr>
<td>Depth</td>
<td>mm / inch</td>
<td>330 / 12.99</td>
<td>500 / 19.69</td>
</tr>
<tr>
<td>Interior volume</td>
<td>l / cu.ft.</td>
<td>53 / 1.9</td>
<td>170 / 6.0</td>
</tr>
<tr>
<td>Chamber size</td>
<td>56</td>
<td>170</td>
<td>260</td>
</tr>
<tr>
<td>-------------</td>
<td>----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Shelves</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of shelves, regular</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Number of shelves, max.</td>
<td>3</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>Size of shelf (external) Width x Depth</td>
<td>mm x mm</td>
<td>396 x 289</td>
<td>551 x 442</td>
</tr>
<tr>
<td></td>
<td>inch x inch</td>
<td>15.59 x 11.38</td>
<td>21.69 x 17.40</td>
</tr>
<tr>
<td>Maximum load per shelf Kg / lbs.</td>
<td>10 / 22</td>
<td>10 / 22</td>
<td>10 / 22</td>
</tr>
<tr>
<td>Permitted total load Kg / lbs</td>
<td>30 / 66</td>
<td>30 / 66</td>
<td>40 / 88</td>
</tr>
<tr>
<td>Weight</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight (empty) Kg / lbs</td>
<td>***</td>
<td>95 / 209.4</td>
<td>121 / 266.8</td>
</tr>
<tr>
<td>Weight (empty) (chamber with active humidification) Kg / lbs</td>
<td>***</td>
<td>97 / 213.8</td>
<td>122 / 268.9</td>
</tr>
<tr>
<td>Temperature data (chamber without active humidification)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature range from ... degree above ambient °C / °F</td>
<td>***</td>
<td>4 / 7.2</td>
<td>5 / 9.0</td>
</tr>
<tr>
<td>up to °C / °F</td>
<td>60 / 140</td>
<td>60 / 140</td>
<td>60 / 140</td>
</tr>
<tr>
<td>Temperature range, chamber with O₂ control from ... degree above ambient °C / °F</td>
<td>***</td>
<td>6 / 10.8</td>
<td>6 / 10.8</td>
</tr>
<tr>
<td>up to °C / °F</td>
<td>60 / 140</td>
<td>60 / 140</td>
<td>60 / 140</td>
</tr>
<tr>
<td>Temperature fluctuation at 37 °C / 98.6 °F ± K</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Temperature uniformity (variation) at 37 °C/ 98.6 °F ± K</td>
<td>***</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>Recovery time after door was opened for 30 sec at 37 °C / 98.6 °F minutes</td>
<td>***</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Temperature data (chamber with active humidification)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature range from ... degree above ambient °C / °F</td>
<td>***</td>
<td>5 / 9</td>
<td>6 / 10.8</td>
</tr>
<tr>
<td>up to °C / °F</td>
<td>60 / 140</td>
<td>60 / 140</td>
<td>60 / 140</td>
</tr>
<tr>
<td>Temperature range, chamber with O₂ control from ... degree above ambient °C / °F</td>
<td>***</td>
<td>7 / 12.6</td>
<td>6 / 10.8</td>
</tr>
<tr>
<td>up to °C / °F</td>
<td>60 / 140</td>
<td>60 / 140</td>
<td>60 / 140</td>
</tr>
<tr>
<td>Temperature fluctuation at 37 °C / 98.6 °F ± K</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Temperature uniformity (variation) at 37 °C/ 98.6 °F ± K</td>
<td>***</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Recovery time after door was opened for 30 sec at 37 °C / 98.6 °F minutes</td>
<td>***</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>CO₂ data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO₂ range vol.% CO₂</td>
<td>0 to 20</td>
<td>0 to 20</td>
<td>0 to 20</td>
</tr>
<tr>
<td>Setting accuracy vol.% CO₂</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>CO₂ fluctuation vol.% CO₂</td>
<td>***</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Recovery time after door was opened for 30 sec at 5 vol.% CO₂ minutes</td>
<td>***</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>CO₂ measurement IR</td>
<td>IR</td>
<td>IR</td>
<td></td>
</tr>
<tr>
<td>Connection hose nozzle DN6 for CO₂ connection to the chamber for hose with internal diameter mm / inch</td>
<td>6 / 0.24</td>
<td>6 / 0.24</td>
<td>6 / 0.24</td>
</tr>
<tr>
<td>Humidity data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Humidity range (chamber without active humidification) % r.h.</td>
<td>90 to 95</td>
<td>90 to 95</td>
<td>90 to 95</td>
</tr>
<tr>
<td>Humidity range (chamber with active humidification) % r.h.</td>
<td>50 to 95</td>
<td>50 to 95</td>
<td>50 to 95</td>
</tr>
</tbody>
</table>

CO₂ measurement:
- IR

Connection hose nozzle DN6 for CO₂ connection to the chamber for hose with internal diameter:
- mm / inch
 - 6 / 0.24

Humidity range:
- (chamber without active humidification): 90 to 95
- (chamber with active humidification): 50 to 95
<table>
<thead>
<tr>
<th>Chamber size</th>
<th>56</th>
<th>170</th>
<th>260</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humidity data (continued)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recovery time after door was opened for 30 sec at 90 % r.h. (chamber with active humidification)</td>
<td>minutes</td>
<td>***</td>
<td>12</td>
</tr>
<tr>
<td>O₂ Data (chamber with O₂ control)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O₂ range (regular hypoxic control range)</td>
<td>vol.-% O₂</td>
<td>0.2 to 20</td>
<td>0.2 to 20</td>
</tr>
<tr>
<td>O₂ range (optional alternative control range)</td>
<td>vol.-% O₂</td>
<td>10 to 95</td>
<td>10 to 95</td>
</tr>
<tr>
<td>Setting accuracy with inlet pressure 2 bar</td>
<td>vol.-% O₂</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>O₂ fluctuation</td>
<td>vol.-% O₂</td>
<td>***</td>
<td>0.1</td>
</tr>
<tr>
<td>Recovery time after door was opened for 30 sec at 5 vol.-% O₂</td>
<td>minutes</td>
<td>***</td>
<td>10</td>
</tr>
<tr>
<td>O₂ measurement</td>
<td></td>
<td>ZrO₂</td>
<td>ZrO₂</td>
</tr>
<tr>
<td>Connection hose nozzle DN6 for O₂/N₂ connection to the chamber for hose with internal diameter</td>
<td>mm / inch</td>
<td>6 / 0.24</td>
<td>6 / 0.24</td>
</tr>
<tr>
<td>Electrical data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IP system of protection acc. to EN 60529</td>
<td>IP</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Nominal voltage (+/-10 %) at 50 Hz power frequency</td>
<td>V</td>
<td>200-230</td>
<td>200-230</td>
</tr>
<tr>
<td>Nominal voltage (+/-10 %) at 60 Hz power frequency</td>
<td>V</td>
<td>200-230</td>
<td>200-230</td>
</tr>
<tr>
<td>Current type</td>
<td>1N~</td>
<td>1N~</td>
<td>1N~</td>
</tr>
<tr>
<td>Nominal power (chamber without active humidification)</td>
<td>kW</td>
<td>***</td>
<td>1.30</td>
</tr>
<tr>
<td>Nominal power (chamber with active humidification)</td>
<td>kW</td>
<td>***</td>
<td>1.60</td>
</tr>
<tr>
<td>Power plug (IEC connector plug)</td>
<td>Grounded plug IEC 7/7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Installation category acc. to IEC 61010-1</td>
<td>II</td>
<td>II</td>
<td>II</td>
</tr>
<tr>
<td>Pollution degree acc. to IEC 61010-1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Chamber fuse 4x20mm / 250V / time-lag (T), external</td>
<td>Amp</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Additional temperature fuse class 1 (DIN 12880), internal</td>
<td>°C</td>
<td>240</td>
<td>240</td>
</tr>
<tr>
<td>Different electrical data for CB-UL constructed for the USA and Canada</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nominal voltage (+/-10 %) at 50 Hz power frequency</td>
<td>V</td>
<td>100-120</td>
<td>100-120</td>
</tr>
<tr>
<td>Nominal voltage (+/-10 %) at 60 Hz power frequency</td>
<td>V</td>
<td>100-120</td>
<td>100-120</td>
</tr>
<tr>
<td>Current type</td>
<td>1N~</td>
<td>1N~</td>
<td>1N~</td>
</tr>
<tr>
<td>Power plug</td>
<td>NEMA</td>
<td>5-15P</td>
<td>5-20P</td>
</tr>
<tr>
<td>Chamber fuse 6.3x32 mm / 250V / time-lag (T), external</td>
<td>Amp</td>
<td>12.5</td>
<td>12.5</td>
</tr>
<tr>
<td>Environment-specific data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noise level (mean value)</td>
<td>dB (A)</td>
<td>***</td>
<td>41</td>
</tr>
<tr>
<td>Energy consumption at 37 °C/ 98.6 °F</td>
<td>Wh/h</td>
<td>***</td>
<td>55</td>
</tr>
</tbody>
</table>

*** Data not yet determined

Notes:

- The recovery times of the gas concentrations inside the chamber after the door is opened coincide with a connection pressure of 2.0 bar / 29 psi. Decreasing supply pressure results in longer recovery times.
- The specified recovery times can be observed with a door opening of up to 60s. If the outer door is left open for more than 3 minutes, all heaters are deactivated. It is then necessary to let the chamber equilibrate again.
All technical data is specified for unloaded chambers with standard equipment at an ambient temperature of 22 +/- 3 °C / 71.6 +/- 5.4 °F and a power supply voltage fluctuation of +/-10%. Technical data is determined in accordance to BINDER Factory Standard Part 2:2015 and DIN 12880:2007.

All indications are average values, typical for chambers produced in series. We reserve the right to change technical specifications at any time.

Chamber with active humidification: Bringing a source of humidity into the inner chamber will affect the minimum humidity specification.

24.5 Equipment and Options (extract)

To operate the chamber, use only original BINDER accessories or accessories / components from third-party suppliers authorized by BINDER. The user is responsible for any risk arising from using unauthorized accessories.

<table>
<thead>
<tr>
<th>Regular equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multifunction touchscreen controller MB2 for temperature, CO₂, O₂ (chamber with O₂ control) and humidity (chamber with active humidification)</td>
</tr>
<tr>
<td>CO₂ infra-red absorption measuring system</td>
</tr>
<tr>
<td>Silicone jacket heating</td>
</tr>
<tr>
<td>Hot-air auto sterilization at 187.5 °C / 369.5 °F</td>
</tr>
<tr>
<td>Gas mixing head</td>
</tr>
<tr>
<td>Permadry™ humidity system</td>
</tr>
<tr>
<td>Weldless deep-drawn polished inner chamber made of stainless steel 1.4301/V2A, polished</td>
</tr>
<tr>
<td>FailSafe – Electronic error auto-diagnosis system with zero-voltage relay output</td>
</tr>
<tr>
<td>Zero-voltage relay alarm output with DIN socket (6 poles), DIN plug included</td>
</tr>
<tr>
<td>Lockable door</td>
</tr>
<tr>
<td>Tightly closing inner glass door</td>
</tr>
<tr>
<td>3 perforated shelves, stainless steel 1.4301/V2A</td>
</tr>
<tr>
<td>Overtemperature safety controller class 3.1 acc. to DIN 12880:2007</td>
</tr>
<tr>
<td>Chamber with active humidification: Microprocessor controlled humidifying system</td>
</tr>
<tr>
<td>Chamber with O₂ control: O₂ control in the hypoxic control range 0.2 to 20 vol. % O₂</td>
</tr>
<tr>
<td>Ethernet interface for computer communication</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Options / accessories</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perforated shelf, stainless steel</td>
</tr>
<tr>
<td>Perforated shelf, full copper</td>
</tr>
<tr>
<td>Chamber with O₂ control: Alternative control range 10 to 95 vol. % O₂ (available via BINDER INDIVIDUAL Customized Solutions)</td>
</tr>
<tr>
<td>Divided inner door, gas-proof, stainless steel, 4 times (CB / CB-UL 56), 6 times (CB / CB-UL 170), 8 times (CB / CB-UL 260)</td>
</tr>
<tr>
<td>Shelves for divided inner door, gas-proof, stainless steel</td>
</tr>
<tr>
<td>Quick sample access</td>
</tr>
<tr>
<td>Stacking stand with castors lockable by breaks (CB / CB-UL 170 / 210)</td>
</tr>
<tr>
<td>Stacking adapter for direct, thermally decoupled stacking</td>
</tr>
<tr>
<td>Base with castors</td>
</tr>
<tr>
<td>Stacking adapter for combination C / C-UL 150 on top of CB / CB-UL 170</td>
</tr>
<tr>
<td>Silicone access ports closable with 2 silicone plugs</td>
</tr>
<tr>
<td>BINDER Gas Supply Service: External CO₂ bottle changer for CO₂, O₂, or N₂</td>
</tr>
<tr>
<td>Connection kit for CO₂, O₂ or N₂ cylinder</td>
</tr>
</tbody>
</table>
Options / accessories

Water tight internal socket 230 V (max. 3 A), with turn-off switch (available via BINDER INDIVIDUAL Customized Solutions)

Analog output temperature and CO₂ 4-20 mA 4-20mA with DIN socket (6 poles), DIN plug included

BINDER Data Logger kit for temperature: T 220 (chamber values), and for temperature / humidity: TH 70 (chamber values) or TH 70/70 (chamber and ambient values)

BINDER Pure Aqua Service

Cartridge for BINDER Pure Aqua Service

Cleaning kit (neutral cleaning agent, disinfection spray and lint-free disposable wipes, gloves and goggles)

Intelligent Fail-Safe CO₂ monitoring function

CELLROLL roller system with set of connection cables for extra-low voltage access port

Access port (8-pin) for extra-low voltage (ELV) with LEMO socket (can be covered) and LEMO connector, maximum power rating 24VAC/DC – 2.5 Amp

Data Logger Kit T 260

Gas fine filter with two connection pieces

Freshwater bag (0.9 liters / 0.32 cu.ft.)

Tubular bag set incl. accessories for chamber with active humidification

Set with 3 or 12 tubular bags (annual demand)

Humidification water set incl. accessories for chamber with active humidification

Water container set incl. accessories for chamber with active humidification

Qualification folder

Calibration of temperature including certificate

Calibration of CO₂ including certificate

Spatial temperature measurement including certificate

Spatial temperature measurement acc. to DIN 12880 including certificate

Chamber with O₂ control: Calibration of O₂ including certificate

Chamber with active humidification: Calibration of humidity including certificate

Chamber with active humidification: Spatial temperature and humidity measurement including certificate

24.6 Accessories and spare parts (extract)

BINDER GmbH is responsible for the safety features of the chamber only, provided skilled electricians or qualified personnel authorized by BINDER perform all maintenance and repair, and if components relating to chamber safety are replaced in the event of failure with original spare parts. The user is responsible for any risks arising from using unauthorized accessories/components.

<table>
<thead>
<tr>
<th>Description</th>
<th>CB / CB-UL 170</th>
<th>CB / CB-UL 260</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perforated shelf, stainless steel</td>
<td>6004-0137</td>
<td>6004-0197</td>
</tr>
<tr>
<td>Perforated shelf, full copper</td>
<td>6004-0233</td>
<td>---</td>
</tr>
<tr>
<td>Divided shelves (1 level) for divided inner door, stainless steel</td>
<td>6004-0226</td>
<td>6004-0227</td>
</tr>
<tr>
<td>Door gasket for outer chamber door</td>
<td>6005-0275</td>
<td>6005-0296</td>
</tr>
<tr>
<td>Door gasket for inner glass door or for divided inner door</td>
<td>6005-0508</td>
<td>6005-0314</td>
</tr>
<tr>
<td>Door gasket for individual glass door of divided inner door</td>
<td>6005-0293</td>
<td>6005-0305</td>
</tr>
<tr>
<td>Individual glass door of divided inner door, complete</td>
<td>8010-0111</td>
<td>8010-0116</td>
</tr>
<tr>
<td>Stacking stand with castors lockable by breaks</td>
<td>9051-0020</td>
<td>9051-0041</td>
</tr>
<tr>
<td>Base with castors</td>
<td>9051-0028</td>
<td>9051-0044</td>
</tr>
<tr>
<td>Description</td>
<td>CB / CB-UL 170</td>
<td>CB / CB-UL 260</td>
</tr>
<tr>
<td>---</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Stacking adapter for combination C / C-UL150/160/170 on top of CB / CB-UL 170</td>
<td>9051-0027</td>
<td>---</td>
</tr>
<tr>
<td>Flat stacking adapter</td>
<td>9051-0035</td>
<td>9051-0039</td>
</tr>
<tr>
<td>CELLROLL roller system with set of connection cables and extra-low voltage access port</td>
<td>8012-0571</td>
<td>8012-0572</td>
</tr>
<tr>
<td>Permadry™ water pan, stainless steel</td>
<td>4022-0081</td>
<td>6006-0441</td>
</tr>
<tr>
<td>Permadry™ water pan, full copper</td>
<td>4022-0086</td>
<td>---</td>
</tr>
<tr>
<td>Description</td>
<td>Art. no.</td>
<td></td>
</tr>
<tr>
<td>Plug for optional silicon access port d30</td>
<td>6016-0035</td>
<td></td>
</tr>
<tr>
<td>Gas cylinder connection kit for CO₂</td>
<td>8012-0014</td>
<td></td>
</tr>
<tr>
<td>Gas cylinder connection kit for O₂</td>
<td>8012-0015</td>
<td></td>
</tr>
<tr>
<td>Gas cylinder connection kit for N₂</td>
<td>8012-0016</td>
<td></td>
</tr>
<tr>
<td>Chamber fuse 5x20mm 250 V 10 A time-lag (T)</td>
<td>5006-0088</td>
<td></td>
</tr>
<tr>
<td>Chamber fuse 6.3x32mm 250V 12.5 A time-lag (T) for CUL version only</td>
<td>5006-0096</td>
<td></td>
</tr>
<tr>
<td>CO₂ sensor</td>
<td>5002-0078</td>
<td></td>
</tr>
<tr>
<td>O₂ sensor for chamber with regular equipment: hypoxic control range 0.2 up to 20 vol.-% O₂</td>
<td>5002-0084</td>
<td></td>
</tr>
<tr>
<td>O₂ sensor for chamber with O₂ control with optional alternative control range 10 up to 95 vol.-% O₂</td>
<td>5002-0085</td>
<td></td>
</tr>
<tr>
<td>Humidity sensor for chamber with active humidification</td>
<td>5002-0077</td>
<td></td>
</tr>
<tr>
<td>Gas fine filter with two connection pieces</td>
<td>8009-0369</td>
<td></td>
</tr>
<tr>
<td>Fresh water bag (0.9 liters / 0.32 cu.ft.) for chamber with active humidification</td>
<td>6002-0626</td>
<td></td>
</tr>
<tr>
<td>Bag set incl. accessories with 3 empty tubular bags for chamber with active humidification (included with delivery):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• 3 empty tubular bags (art.no. 6002-0626, 6002-0626)</td>
<td>8009-1083</td>
<td></td>
</tr>
<tr>
<td>• 3 two-piece tube connectors with 3-5mm nozzles (art.no. 6009-0322)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• 3 two-piece tube connectors with 5-7mm nozzles (art.no. 6009-0323)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• 3 gas fine filters (sterile filter) (art.no. 6014-0012)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• 6 m silicone tube (DN 3mm) (art.no. 6008-0267)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• 1m filling tube (DN 10 mm) (art.no. 6008-0268)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bag set incl. accessories (annual demand) for chamber with active humidification:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• 12 empty tubular bags (art.no. 6002-0626. 6002-0626)</td>
<td>8009-1058</td>
<td></td>
</tr>
<tr>
<td>• 3 two-piece tube connectors with 3-5mm nozzles (art.no. 6009-0322)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• 3 two-piece tube connectors with 5-7mm nozzles (art.no. 6009-0323)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• 12 gas fine filters (sterile filter) (art.no. 6014-0012)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• 6 m silicone tube (DN 3mm) (art.no. 6008-0267)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• 1m filling tube (DN 10 mm) (art.no. 6008-0268)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Humidification water set incl. accessories (annual demand) for chamber with active humidification:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• 10 one-liter bottles, prefilled with sterile, deionized water (art.no. 1007-0314)</td>
<td>8009-1104</td>
<td></td>
</tr>
<tr>
<td>• 3 spike connectors (transfer sets) for sterile liquids (art.no. 6007-0131)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• 3 two-piece tube connectors with 3-5mm nozzles (art.no. 6009-0322)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• 2 m silicone tube (DN 3mm) (art.no. 6008-0267)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• 3 gas fine filters (sterile filter) (art.no. 6014-0012)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• 20 cm silicone tube (DN 6 mm) (art.no. 6008-0009)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Description

Water container set incl. accessories (annual demand) for chamber with active humidification:
- Magnetic can holder adjustable in height, consisting of magnetic holder (art.no. 8022-0009) and water can support (art.no. 4021-0724)
- Water can, 10 l (art.no. 6011-0192)
- Hose coupling with aqua stop (art.no. 6002-0637)
- Angular coupling plug with aqua stop (art.no. 6002-0638)
- 12 gas fine filters (sterile filter) (art.no. 6014-0012)
- 10 m silicone tube (DN 3mm) (art.no. 6008-0267) to the pump or via T-type tube connectors to further chambers
- 50 cm silicone tube, d10 x 2 (art.no. 6008-0268)
- Reducing connector (tube connector 4/9 mm) (art.no. 6009-0308)
- 4 wire tension clamps (art.no. 6009-0281) (2 spare parts)
- 3 T-type tube connectors (T-Pieces), 4mm (art.no. 6009-0318)

<table>
<thead>
<tr>
<th>Description</th>
<th>Art. no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1m silicone tube (DN 3mm) for chamber with active humidification</td>
<td>6008-0267</td>
</tr>
<tr>
<td>Pump head for chamber with active humidification</td>
<td>5013-0204</td>
</tr>
<tr>
<td>BINDER Pure Aqua Service for chamber with active humidification</td>
<td>8012-0759</td>
</tr>
<tr>
<td>Cartridge for BINDER Pure Aqua Service</td>
<td>6011-0165</td>
</tr>
<tr>
<td>Cleaning kit (neutral cleaning agent, disinfection spray and lint-free disposable wipes, protective gloves and goggles)</td>
<td>8012-0503</td>
</tr>
<tr>
<td>Neutral cleaning agent, 1 kg</td>
<td>1002-0016</td>
</tr>
</tbody>
</table>

Validation service

<table>
<thead>
<tr>
<th>Description</th>
<th>Art. no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qualification folder IQ-OQ (printed version)</td>
<td>7007-0001</td>
</tr>
<tr>
<td>Qualification folder IQ-OQ (digital version)</td>
<td>7057-0001</td>
</tr>
<tr>
<td>Qualification folder IQ-OQ-PQ (printed version)</td>
<td>7007-0005</td>
</tr>
<tr>
<td>Qualification folder IQ-OQ-PQ (digital version)</td>
<td>7057-0005</td>
</tr>
<tr>
<td>Execution of IQ-OQ</td>
<td>DL410200</td>
</tr>
<tr>
<td>Execution of IQ-OQ-PQ</td>
<td>DL440500</td>
</tr>
</tbody>
</table>

Calibration service

<table>
<thead>
<tr>
<th>Description</th>
<th>Art. no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibration of temperature including certificate</td>
<td>8012-1132</td>
</tr>
<tr>
<td>Calibration of temperature and CO₂ including certificate</td>
<td>8012-1235</td>
</tr>
<tr>
<td>Calibration of O₂ including certificate (chamber with O₂ control)</td>
<td>8012-0229</td>
</tr>
<tr>
<td>Spatial temperature measurement including certificate (15-18 measuring points)</td>
<td>8012-1571</td>
</tr>
<tr>
<td>Spatial temperature measurement including certificate (9 measuring points)</td>
<td>8012-1550</td>
</tr>
<tr>
<td>Spatial temperature measurement including certificate (27 measuring points)</td>
<td>8012-1592</td>
</tr>
<tr>
<td>Spatial temperature and humidity measurement including certificate (27 measuring points for temperature, 1 measuring point for humidity)</td>
<td>8012-0924</td>
</tr>
</tbody>
</table>

For information on components not listed here, please contact BINDER Service.
24.7 Important conversion data for non-SI units

1 ft = 0.305 m
1 m = 100 cm = 3.28 ft = 39.37 inch
1 mbar = 0.0145 psi

24.8 Conversion table for gas inlet pressures, bar – psi

<table>
<thead>
<tr>
<th>bar</th>
<th>psi</th>
<th>bar</th>
<th>psi</th>
<th>bar</th>
<th>psi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14.5</td>
<td>3</td>
<td>43.5</td>
<td>5</td>
<td>72.5</td>
</tr>
<tr>
<td>1.5</td>
<td>21.7</td>
<td>3.5</td>
<td>50.7</td>
<td>5.5</td>
<td>79.7</td>
</tr>
<tr>
<td>2</td>
<td>29.0</td>
<td>4</td>
<td>58.0</td>
<td>6</td>
<td>87.0</td>
</tr>
<tr>
<td>2.5</td>
<td>36.3</td>
<td>4.5</td>
<td>65.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
24.9 Dimensions

24.9.1 CB / CB-UL 170

(Dimensions in mm)
24.9.2 CB / CB-UL 260

(Dimensions in mm)
25. Certificates and declarations of conformity

25.1 EU Declaration of conformity

<table>
<thead>
<tr>
<th>Hersteller</th>
<th>BINDER GmbH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anschrift</td>
<td>Im Mittleren Ösch 5, 78532 Tuttingen, Germany</td>
</tr>
<tr>
<td>Produkt</td>
<td>CO₂-Inkubatoren</td>
</tr>
<tr>
<td>Typenbezeichnung</td>
<td>CB 56, CB 170, CB 260 (E7)</td>
</tr>
</tbody>
</table>

The products described above are in conformity with the following EU Directives:

Die oben beschriebenen Produkte tragen entsprechend die Kennzeichnung CE.
The products described above, corresponding to this, bear the CE-mark.
Les produits décrits ci-dessus, en correspondance, portent l'indication CE.
Los productos descritos arriba, en conformidad, llevan la indicación CE.
I prodotti sopra descritti, conformi a quanto sopra, portano il marchio CE.

Die oben beschriebenen Produkte sind konform mit folgenden harmonisierten Normen:
The products described above are in conformity with the following harmonized standards:
Les produits décrits ci-dessus sont conformes aux normes harmonisées suivantes:
Los productos descritos arriba cumplen con las siguientes normas:
I prodotti sopra descritti sono conformi alle seguenti normative armonizzate:

<table>
<thead>
<tr>
<th>Sicherheit / Safety / Sécurité / Seguridad / Sicurezza</th>
<th>Normative per la sicurezza</th>
</tr>
</thead>
<tbody>
<tr>
<td>* EN 61010-1:2010</td>
<td></td>
</tr>
<tr>
<td>* EN 61010-2-010:2014</td>
<td></td>
</tr>
<tr>
<td>EMV / EMC / CEM / CEM / EMC / EMC / EMC</td>
<td></td>
</tr>
<tr>
<td>* EN 61326-1:2013</td>
<td></td>
</tr>
<tr>
<td>RoHS</td>
<td></td>
</tr>
<tr>
<td>* EN 50561:2012</td>
<td></td>
</tr>
</tbody>
</table>

76532 Tuttingen, 26.05.2020
BINDER GmbH

P. Wimmer
Vice President

J. Rolladen
Leiter F & E

Director R & D

Chef de service R&D

Responsable I & D

Direttore R & D

Гла́ва депа́ртамента Р&D
26. Product registration

Online Product Registration
Register your BINDER now!

www.binder-world.com/register

The registration is free and takes just a few seconds

Advantages:
▶ Short response times if service is needed
▶ Fair prices when relocating or installing equipment
▶ Calibration as required at no charge in case of recalls
▶ Free information on news, product upgrades and accessories

Easy registered in 3 steps:

1. List serial number here: □□□□□□□□□□
2. Go online: www.binder-world.com/register
3. Register serial number
27. Contamination clearance certificate

27.1 For chambers located outside the USA and Canada

Declaration regarding safety and health

The German Ordinance on Hazardous Substances (GefStofV), and the regulations regarding safety at the workplace, require that this form be filled out for all products that are returned to us, so that the safety and the health of our employees can be guaranteed.

Die Sicherheit und Gesundheit unserer Mitarbeiter, die Gefahrstoffverordnung GefStofV und die Vorschriften zur Sicherheit am Arbeitsplatz machen es erforderlich, dass dieses Formblatt für alle Produkte, die an uns zurückgeschickt wird.

Note: A repair is not possible without a completely filled out form.

<table>
<thead>
<tr>
<th>Note: A repair is not possible without a completely filled out form.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ohne Vorliegen des vollständig ausgefüllten Formblattes ist eine Reparatur nicht möglich.</td>
</tr>
</tbody>
</table>

- A completely filled out form must be transmitted via Fax (+49 (0) 7462 2005 93555) or by letter in advance, so that this information is available before the equipment/component part arrives. A second copy of this form must accompany the equipment/component part. In addition, the carrier should be informed.

| Eine vollständig ausgefüllte Kopie dieses Formblattes soll per Telefax (Nr. +49 (0) 7462 2005 93555) oder Brief vorab an uns gesandt werden, so dass die Information vorliegt, bevor das Gerät/Bauteil eintrifft. Eine weitere Kopie soll dem Gerät/Bauteil beigefügt sein. Ggf. ist auch die Spedition zu informieren. |

- Incomplete information or non-conformity with this procedure will inevitably lead to substantial delays in processing. Please understand the reason for this measure, which lies outside our area of influence and will help us to speed up this procedure.

- Please print and fill out this form completely.

| Bitte unbedingt vollständig ausfüllen! |

<table>
<thead>
<tr>
<th>1. Chamber/ component part / type: / Gerät / Bauteil / Typ:</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Serial No./ Serien-Nr.:</td>
</tr>
<tr>
<td>3. Details about utilized substances / biological substances / Einzelheiten über die eingesetzten Substanzen/biologische Materialien:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3.1 Designations / Bezeichnungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) __</td>
</tr>
<tr>
<td>b) __</td>
</tr>
<tr>
<td>c) __</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3.2 Safety measures required for handling these substances / Vorsichtsmaßnahmen beim Umgang mit diesen Stoffen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) __</td>
</tr>
<tr>
<td>b) __</td>
</tr>
<tr>
<td>c) __</td>
</tr>
</tbody>
</table>
3.3 Measures to be taken in case of skin contact or release into the atmosphere / Maßnahmen bei Personenkontakt oder Freisetzung:

a)

b)

c)

d)

3.4 Other important information that must be taken into account / Weitere zu beachtende und wichtige Informationen:

a)

b)

c)

4. Declaration on the risk of these substances (please checkmark the applicable items) / Erklärung zur Gefährlichkeit der Stoffe (bitte Zutreffendes ankreuzen):

- **4.1** For non-toxic, non-radioactive, biologically harmless materials / für nicht giftige, nicht radioaktive, biologisch ungefährliche Stoffe:

 - We hereby guarantee that the above-mentioned chamber / component part... / Wir versichern, dass o.g. Gerät/Bauteil...
 - Has not been exposed to or contains any toxic or otherwise hazardous substances / weder giftige noch sonstige gefährliche Stoffe enthält oder solche anhaften.
 - That eventually generated reaction products are non-toxic and also do not represent a hazard / auch evtl. entstandene Reaktionsprodukte weder giftig sind noch sonst eine Gefährdung darstellen.
 - Eventual residues of hazardous substances have been removed / evtl. Rückstände von Gefahrstoffen entfernt wurden.

- **4.2** For toxic, radioactive, biologically harmful or hazardous substances, or any other hazardous materials / für giftige, radioaktive, biologisch bedenkliche bzw. gefährliche Stoffe oder anderweitig gefährliche Stoffe.

 - We hereby guarantee that ... / Wir versichern, dass ...
 - The hazardous substances, which have come into contact with the above-mentioned equipment/component part, have been completely listed under item 3.1 and that all information in this regard is complete / die gefährlichen Stoffe, die mit dem o.g. Gerät/Bauteil in Kontakt kamen, in 3.1 aufgelistet sind und alle Angaben vollständig sind.
 - That the chamber/component part has not been in contact with radioactivity / das Gerät/Bauteil nicht mit Radioaktivität in Berührung kam

5. Kind of transport / transporter / Transportweg/Spediteur:

Transport by (means and name of transport company, etc.) Versendung durch (Name Spediteur o.ä.)

Date of dispatch to BINDER GmbH / Tag der Absendung an BINDER GmbH:
We hereby declare that the following measures have been taken / Wir erklären, dass folgende Maßnahmen getroffen wurden:

- Hazardous substances were removed from the chamber including component parts, so that no hazard exists for any person in the handling or repair of these items / das Gerät/Bauteil wurde von Gefahrstoffen befreit, so dass bei Handhabung/Reparaturen für die betreffenden Person keinerlei Gefährdung besteht.

- The chamber was securely packaged and properly identified / das Gerät wurde sicher verpackt und vollständig gekennzeichnet.

- Information about the hazardousness of the shipment (if required) has been provided to the transporter / der Spediteur wurde (falls vorgeschrieben) über die Gefährlichkeit der Sendung informiert.

We hereby commit ourselves and guarantee that we will indemnify BINDER GmbH for all damages that are a consequence of incomplete or incorrect information provided by us, and that we will exempt BINDER GmbH from eventual damage claims by third parties. / Wir versichern, dass wir gegenüber BINDER für jeden Schaden, der durch unvollständige und unrichtige Angaben entsteht, haften und BINDER gegen eventuell entstehende Schadenansprüche Dritter freistellen.

We are aware that, in accordance with Article 823 of the German Civil Code (BGB), we are directly liable with regard to third parties, in this instance especially the employees of BINDER GmbH, who have been entrusted with the handling / repair of the chamber / component. / Es ist uns bekannt, dass wir gegenüber Dritten – hier insbesondere mit der Handhabung/Reparatur des Geräts/des Bauteils betraute Mitarbeiter der Firma BINDER - gemäß §823 BGB direkt haften.

Name: ___

Position/Title: ___

Date / Datum: ___

Signature / Unterschrift: ___

Company stamp / Firmenstempel:

Equipment that is returned to the factory for repair must be accompanied by a completely filled out contamination clearance certificate. For service and maintenance on site, such a contamination clearance certificate must be submitted to the service technician before the start of any work. No repair or maintenance of the equipment is possible, without a properly filled out contamination clearance certificate.
27.2 For chambers in the USA and Canada

Product Return Authorization Request

Please complete this form and the Customer Decontamination Declaration (next 2 pages) and attach the required pictures. E-mail to: IDL_SalesOrderProcessing_USA@binder-world.com

After we have received and reviewed the complete information we will decide on the issue of a RMA number. Please be aware that size specifications, voltage specifications as well as performance specifications are available on the internet at www.binder-world.us at any time.

Take notice of shipping laws and regulations.

<table>
<thead>
<tr>
<th>Reason for return request</th>
<th>○ Duplicate order</th>
<th>○ Duplicate shipment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>○ Demo</td>
<td>○ Power Plug / Voltage 115V / 230 V / 208 V / 240V</td>
</tr>
<tr>
<td></td>
<td>○ Size does not fit space</td>
<td>○ Transport Damage Shock watch tripped? (pictures)</td>
</tr>
<tr>
<td></td>
<td>○ Other (specify below)</td>
<td></td>
</tr>
</tbody>
</table>

Is there a replacement PO? ○ Yes ○ No

If yes -> PO #

If yes -> Date PO placed

Purchase order number

BINDER model number

BINDER serial number

Date chamber was received

Was the chamber unboxed? ○ Yes ○ No

Was the chamber plugged in? ○ Yes ○ No

Was the chamber in operation? ○ Yes ○ No

Pictures of chamber attached? ○ Yes ○ No Pictures of Packaging attached? ○ Yes ○ No Pictures have to be attached!

Customer Contact Information Distributor Contact Information

Name

Company

Address

Phone

E-mail
Customer (End User) Decontamination Declaration
Health and Hazard Safety declaration

To protect the health of our employees and the safety at the workplace, we require that this form is completed by the user for all products and parts that are returned to us. (Distributors or Service Organizations cannot sign this form)

NO RMA number will be issued without a completed form. Products or parts returned to our NY warehouse without a RMA number will be refused at the dock.

A second copy of the completed form must be attached to the outside of the shipping box.

<table>
<thead>
<tr>
<th>1. Chamber/ component part / type:</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Serial No.</td>
</tr>
<tr>
<td>3. List any exposure to hazardous liquids, gasses or substances and radioactive material</td>
</tr>
<tr>
<td>3.1 List with MSDS sheets attached where available or needed</td>
</tr>
<tr>
<td>(if there is not enough space available below, please attach a page):</td>
</tr>
<tr>
<td>a) __</td>
</tr>
<tr>
<td>b) __</td>
</tr>
<tr>
<td>c) __</td>
</tr>
<tr>
<td>3.2 Safety measures required for handling the list under 3.1</td>
</tr>
<tr>
<td>a) __</td>
</tr>
<tr>
<td>b) __</td>
</tr>
<tr>
<td>c) __</td>
</tr>
<tr>
<td>3.3 Measures to be taken in case of skin contact or release into the atmosphere:</td>
</tr>
<tr>
<td>a) __</td>
</tr>
<tr>
<td>b) __</td>
</tr>
<tr>
<td>c) __</td>
</tr>
<tr>
<td>d) __</td>
</tr>
<tr>
<td>3.4 Other important information that must be considered:</td>
</tr>
<tr>
<td>a) __</td>
</tr>
<tr>
<td>b) __</td>
</tr>
<tr>
<td>c) __</td>
</tr>
</tbody>
</table>
4. **Declaration of Decontamination**

For toxic, radioactive, biologically and chemically harmful or hazardous substances, or any other hazardous materials.

We hereby guarantee that

4.1 Any hazardous substances, which have come into contact with the above-mentioned equipment / component part, have been completely listed under item 3.1 and that all information in this regard is complete.

4.2 That the chamber / component part has not been in contact with radioactivity.

4.3 Any hazardous substances were removed from the chamber / component part, so that no hazard exists for a persons in the shipping, handling or repair of these returned chamber.

4.4 The chamber was securely packaged in the original undamaged packaging and properly identified on the outside of the packaging material with the chamber designation, the RMA number and a copy of this declaration.

4.5 Shipping laws and regulations have not been violated.

I hereby commit and guarantee that we will indemnify BINDER Inc. for all damages that are a consequence of incomplete or incorrect information provided by us, and that we will indemnify and hold harmless BINDER Inc. from eventual damage claims by third parties.

<table>
<thead>
<tr>
<th>Name:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Position:</td>
<td></td>
</tr>
<tr>
<td>Company:</td>
<td></td>
</tr>
<tr>
<td>Address:</td>
<td></td>
</tr>
<tr>
<td>Phone #:</td>
<td></td>
</tr>
<tr>
<td>Email:</td>
<td></td>
</tr>
<tr>
<td>Date:</td>
<td></td>
</tr>
<tr>
<td>Signature:</td>
<td></td>
</tr>
</tbody>
</table>

Equipment returned to the NY warehouse for repair must be accompanied by a completed customer decontamination declaration. For service and maintenance works on site, such a customer decontamination declaration must be submitted to the service technician before the start of work. No repair or maintenance of the equipment is possible without a completed form.